

glom

Restructuring data, the Python way.

[image: release] [https://pypi.org/project/glom/] [image: calver] [https://calver.org] [image: changelog] [https://github.com/mahmoud/glom/blob/master/CHANGELOG.md]

glom is a new approach to working with data in Python, featuring:

	Path-based access for nested structures

	Declarative data transformation using lightweight, Pythonic specifications

	Readable, meaningful error messages

	Built-in debugging features

	Plus, deep assignment, streaming, data validation, and more!

While it may sound like a lot, glom’s straightforward approach becomes
second-nature very quickly. Get started with a few minutes on the
tutorial!

Installation

glom is pure Python, and tested on Python 2.7-3.7, as well as
PyPy. Installation is easy:

pip install glom

Then you’re ready to get glomming!

from glom import glom

target = {'a': {'b': {'c': 'd'}}}
glom(target, 'a.b.c') # returns 'd'

There’s much, much more to glom, check out the glom Tutorial and API reference!

Just glom it! ☄️

Learning glom

	glom Tutorial

	Frequently Asked Questions

	glom by Analogy

	Examples & Snippets

	glom Command-Line Interface

API Reference

	Core glom API
	The glom Function

	Basic Specifiers

	Object-Oriented Access and Method Calls with T

	Defaults with Coalesce

	Calling Callables with Invoke

	Self-Referential Specs

	Core Exceptions

	Setup and Registration

	Assignment & Mutation
	Assignment

	Deletion

	Exceptions

	Streaming & Iteration

	Reduction & Grouping
	Combining iterables with Flatten and Merge

	Exceptions

	Matching & Validation
	Validation with Match

	Optional and required dict key matching

	M Expressions

	Boolean operators and matching

	String matching

	Exceptions

	Validation with Check

	Exceptions & Debugging
	Exceptions

	Reading a glom Exception

	Debugging

Extending glom

	Writing a custom Specifier Type

	glom Modes

glom Tutorial

Learn to use glom in no time!

Basic use of glom requires only a glance, not a whole tutorial. The
case studies below takes a wider look at day-to-day data and object
manipulation, helping you develop an eye for writing robust,
declarative data transformations.

Go beyond basic with 10 minutes or less, and even further if you
can spare a half hour.

Contents

	Dealing with Data

	Accessing Nested Data

	Interactive Deep Get

	Going Beyond Access

	Handling Nested Lists

	Changing Requirements

	Data-Driven Assignment

	True Python Native

	Interactive Planetary Templating

	Practical Production Use

	Understanding the Specification

	Interactive Contact Management

	Conclusion

Note

glom’s tutorial is a runnable module, feel free to run pip
install glom and from glom.tutorial import * in the Python
REPL to glom along. Or try it in your browser here [https://repl.it/@mhashemi/glom-planetary-templating] or in the
embedded REPLs below!

Dealing with Data

Every application deals with data, and these days, even the simplest
applications deals with rich, heavily-nested data.

What does nested data looks like? In its most basic form:

>>> data = {'a': {'b': {'c': 'd'}}}
>>> data['a']['b']['c']
'd'

Pretty simple right? On a good day, it certainly can be. But other
days, a value might not be set:

>>> data2 = {
... 'a': {
... 'b': None
... }
... }
>>> data2['a']['b']['c']
Traceback (most recent call last):
...
TypeError: 'NoneType' object is not subscriptable

Well that’s no good. We didn’t get our value. We got a TypeError, a
type of error that doesn’t help us at all. The error message doesn’t
even tell us which access failed. If data2 had been passed to us,
we wouldn’t know if 'a', 'b', or 'c' had been set to
None.

If only there were a more semantically powerful accessor.

Accessing Nested Data

AKA “Access Granted”

After years of research and countless iterations, the glom team landed
on this simple construct:

>>> glom(data, 'a.b.c')
'd'

Well that’s short, and reads fine, but what about in the error case?

>>> glom(data2, 'a.b.c')
Traceback (most recent call last):
...
PathAccessError: could not access 'c', index 2 in path Path('a', 'b', 'c'), got error: ...

That’s more like it! We have a function that can give us our data, or
give us an error message we can read, understand, and act upon.

See also

For more on glom’s error messages, see Exceptions & Debugging.

Interactive Deep Get

And would you believe this “deep access” example doesn’t even scratch
the surface of the tip of the iceberg? Welcome to glom.

Going Beyond Access

To start out, let’s introduce some basic terminology:

	target is our data, be it a dict, list, or any other object

	spec is what we want output to be

With output = glom(target, spec) committed to memory, we’re ready for some new requirements.

Let’s follow some astronomers on their journey exploring the solar system.

>>> target = {
... 'galaxy': {
... 'system': {
... 'planet': 'jupiter'
... }
... }
... }
>>> spec = 'galaxy.system.planet'
>>> glom(target, spec)
'jupiter'

Our astronomers want to focus in on the Solar system, and represent planets as a list.
Let’s restructure the data to make a list of names:

>>> target = {
... 'system': {
... 'planets': [
... {'name': 'earth'},
... {'name': 'jupiter'}
...]
... }
... }
>>> glom(target, ('system.planets', ['name']))
['earth', 'jupiter']

And let’s say we want to capture a parallel list of moon counts with the names as well:

>>> target = {
... 'system': {
... 'planets': [
... {'name': 'earth', 'moons': 1},
... {'name': 'jupiter', 'moons': 69}
...]
... }
... }
>>> spec = {
... 'names': ('system.planets', ['name']),
... 'moons': ('system.planets', ['moons'])
... }
>>> pprint(glom(target, spec))
{'moons': [1, 69], 'names': ['earth', 'jupiter']}

We can react to changing data requirements as fast as the data itself can change, naturally restructuring our results,
despite the input’s nested nature. Like a list comprehension, but for nested data, our code mirrors our output.

Handling Nested Lists

In the example above we introduced a new wrinkle: the target for planets has multiple
entries stored in a list. Previously our targets were all nested dictionaries.

To handle this we use a new spec pattern: (path, [subpath]). In this pattern path is the path
to the list, and subpath is the path within each element of the list. What’s that? You need to handle
lists within lists (within lists …)? Then just repeat the pattern, replacing subpath with another
(path, [subpath]) tuple. For example, say we have information about each planet’s moons like so:

>>> target = {
... 'system': {
... 'planets': [
... {
... 'name': 'earth',
... 'moons': [
... {'name': 'luna'}
...]
... },
... {
... 'name': 'jupiter',
... 'moons': [
... {'name': 'io'},
... {'name': 'europa'}
...]
... }
...]
... }
... }

We can get the names of each moon from our nested lists by nesting our subpath specs:

>>> spec = {
... 'planet_names': ('system.planets', ['name']),
... 'moon_names': ('system.planets', [('moons', ['name'])])
... }
>>> pprint(glom(target, spec))
{'moon_names': [['luna'], ['io', 'europa']], 'planet_names': ['earth', 'jupiter']}

Changing Requirements

Unfortunately, data in the real world is messy. You might be expecting a certain format and end up getting something
completely different. No worries, glom to the rescue.

Coalesce is a glom construct that allows you to specify fallback behavior for a list of subspecs.
Subspecs are passed as positional arguments, while defaults can be set using keyword arguments.

Let’s say our astronomers recently got a new update in their systems, and sometimes system will contain
dwarf_planets instead of planets.

To handle this, we can define the dwarf_planets subspec as a Coalesce fallback.

>>> from glom import Coalesce
>>> target = {
... 'system': {
... 'planets': [
... {'name': 'earth', 'moons': 1},
... {'name': 'jupiter', 'moons': 69}
...]
... }
... }
>>> spec = {
... 'planets': (Coalesce('system.planets', 'system.dwarf_planets'), ['name']),
... 'moons': (Coalesce('system.planets', 'system.dwarf_planets'), ['moons'])
... }
>>> pprint(glom(target, spec))
{'moons': [1, 69], 'planets': ['earth', 'jupiter']}

You can see here we get the expected results, but say our target changes…

>>> target = {
... 'system': {
... 'dwarf_planets': [
... {'name': 'pluto', 'moons': 5},
... {'name': 'ceres', 'moons': 0}
...]
... }
... }
>>> pprint(glom(target, spec))
{'moons': [5, 0], 'planets': ['pluto', 'ceres']}

Voila, the target can still be parsed and we can elegantly handle changes in our data formats.

Data-Driven Assignment

Quite often APIs deliver data in dictionaries without constant key values.
They use parts of the data itself as a key. This we call data-driven assignment.

The following example shows you a way to handle this situation.
It extracts the moon count from a dictionary that has the planet names as a key.

>>> from glom import glom, T, Merge, Iter, Coalesce
>>> target = {
... "pluto": {"moons": 6, "population": None},
... "venus": {"population": {"aliens": 5}},
... "earth": {"moons": 1, "population": {"humans": 7700000000, "aliens": 1}},
... }
>>> spec = {
... "moons": (
... T.items(),
... Iter({T[0]: (T[1], Coalesce("moons", default=0))}),
... Merge(),
...)
... }
>>> pprint(glom(target, spec))
{'moons': {'earth': 1, 'pluto': 6, 'venus': 0}}

Don’t worry if you do not fully understand how this works at this
point. If you would like to learn more, look up Iter(),
T, or Merge in the glom API reference.

True Python Native

Most other implementations are limited to a particular data format or pure model, be it jmespath or XPath/XSLT.
glom makes no such sacrifices of practicality, harnessing the full power of Python itself.

Going back to our example, let’s say we wanted to get an aggregate moon count:

>>> target = {
... 'system': {
... 'planets': [
... {'name': 'earth', 'moons': 1},
... {'name': 'jupiter', 'moons': 69}
...]
... }
... }
>>> pprint(glom(target, {'moon_count': ('system.planets', ['moons'], sum)}))
{'moon_count': 70}

With glom, you have full access to Python at any given moment.
Pass values to functions, whether built-in, imported, or defined inline with lambda.

Interactive Planetary Templating

Practical Production Use

AKA “Point of Contact”

glom is a practical tool for production use. To best demonstrate how
you can use it, we’ll be building an API response. We’re implementing
a Contacts web service, like an address book, but backed by an
ORM/database and compatible with web and mobile frontends.

Let’s create a Contact to familiarize ourselves with our test data:
pri

>>> from glom.tutorial import * # import the tutorial module members
>>> contact = Contact('Julian',
... emails=[Email(email='jlahey@svtp.info')],
... location='Canada')
>>> contact.save()
>>> contact.primary_email
Email(id=5, email='jlahey@svtp.info', email_type='personal')
>>> contact.add_date
datetime.datetime(...)
>>> contact.id
5

As you can see, the Contact object has fields for primary_email,
defaulting to the first email in the email list, and add_date, to
track the date the contact was added. And as the unique,
autoincrementing id suggests, there appear to be a few other
contacts already in our system.

>>> len(Contact.objects.all())
5

Sure enough, we’ve got a little address book going here. But right now
it consists of plain Python objects, not very API friendly:

>>> json.dumps(Contact.objects.all())
Traceback (most recent call last):
...
TypeError: Contact(id=1, name='Kurt', ...) ... is not JSON serializable

But at least we know our data, so let’s get to building the API
response with glom.

First, let’s set our source object, conventionally named target:

>>> target = Contact.objects.all() # here we could do filtering, etc.

Next, let’s specify the format of our result. Remember, the processing
is not happening here, this is just declaring the format. We’ll be
going over the specifics of what each line does after we get our
results.

>>> spec = {'results': [{'id': 'id',
... 'name': 'name',
... 'add_date': ('add_date', str),
... 'emails': ('emails', [{'id': 'id',
... 'email': 'email',
... 'type': 'email_type'}]),
... 'primary_email': Coalesce('primary_email.email', default=None),
... 'pref_name': Coalesce('pref_name', 'name', skip='', default=''),
... 'detail': Coalesce('company',
... 'location',
... ('add_date.year', str),
... skip='', default='')}]}

With target and spec in hand, we’re ready to glom, build our
response, and take a look the final json-serialized form:

>>> resp = glom(target, spec)
>>> print(json.dumps(resp, indent=2, sort_keys=True))
{
 "results": [
 {
 "add_date": "20...",
 "detail": "Mountain View",
 "emails": [
 {
 "email": "kurt@example.com",
 "id": 1,
 "type": "personal"
 }
],
 "id": 1,
 "name": "Kurt",
 "pref_name": "Kurt",
 "primary_email": "kurt@example.com"
 },
...
}

As we can see, our response looks a lot like our glom
specification. This type of WYSIWYG code is one of glom’s most
important features. After we’ve appreciated that simple fact, let’s
look at it line by line.

Understanding the Specification

For id and name, we’re just doing simple copy-overs. For
add_date, we use a tuple to denote repeated gloms; we access
add_date and pass the result to str to convert it to a string.

For emails we need to serialize a list of subobjects. Good news, glom
subgloms just fine, too. We use a tuple to access emails, iterate
over that list, and from each we copy over id and email. Note
how email_type is easily remapped to simply type.

For primary_email we see our first usage of glom’s Coalesce
feature. Much like SQL’s keyword of the same name, Coalesce
returns the result of the first spec that returns a valid value. In
our case, primary_email can be None, so a further access of
primary_email.email would, outside of glom, result in an
AttributeError or TypeError like the one we described before the
Contact example. Inside of a glom Coalesce, exceptions are caught
and we move on to the next spec. glom raises a
CoalesceError when no specs match, so we use
default to tell it to return None instead.

Some Contacts have nicknames or other names they prefer to go by, so
for pref_name, we want to return the stored pref_name, or fall
back to the normal name. Again, we use Coalesce, but
this time we tell it not only to ignore the default
GlomError exceptions, but also ignore empty string
values, and finally default to empty string if all specs result in
empty strings or GlomError.

And finally, for our last field, detail, we want to conjure up a
bit of info that’ll help jog the user’s memory. We’re going to include
the location, or company, or year the contact was added. You can see
an example of this feature as implemented by GitHub, here:
https://github.com/mahmoud/glom/stargazers

Interactive Contact Management

Conclusion

We’ve seen a crash course in how glom can tame your data and act as a
powerful source of code coherency. glom transforms not only your data,
but also your code, bringing it in line with the data itself.

glom tamed our nested data, avoiding tedious, bug-prone lines,
replacing what would have been large sections with code that was
declarative, but flexible, an ideal balance for maintainability.

Frequently Asked Questions

Paradigm shifts always raise a question or two.

Contents

	What does “glom” mean?

	Any other glom terminology worth knowing?

	Other glom tips?

	Why not just write more Python?

	How does glom work?

	Does Python need a null-coalescing operator?

What does “glom” mean?

“glom” is short for “conglomerate”, which means “gather into a compact
form”, coming from the Latin “glom-” meaning ball, like globe.

glom can be used as a noun or verb. A developer might say, “I glommed
together this API response.” An astronomer might say, “these gloms of
space dust are forming planets and comets.”

Got some data you need to transform? glom it! ☄️

Any other glom terminology worth knowing?

A couple of conventional terms that help navigate around glom’s
semantics:

	target - glom operates on a variety of inputs, so we simply
refer to the object being accessed (i.e., the first argument to
glom()) as the “target”

	spec - (aka “glomspec”) The accompanying template used to
specify the structure and sources of the output.

	output - The value retrieved or created and returned by
glom().

All of these can be seen in the conventional call to glom():

output = glom(target, spec)

Nothing too wild, but these standard terms really do help clarify the
complex situations glom was built to handle.

Other glom tips?

Just a few (for now):

	Specs don’t have to live in the glom call. You can put them
anywhere. Commonly-used specs work as class attributes and globals.

	Using glom’s declarative approach does wonders for code coverage,
much like attrs [https://github.com/python-attrs/attrs] and schema [https://github.com/keleshev/schema], both of which go great
with glom.

	
	Advanced tips

	
	glom is designed to support all of Python’s built-ins as targets,
and is readily extensible to other types and special handling, through
register().

	If you’re trying to minimize global state, consider
instantiating your own Glommer object to
encapsulate any type registration changes.

If you’ve got more tips or patterns, send them our way [https://github.com/mahmoud/glom/issues]!

Why not just write more Python?

The answer is more than just DRY (“Don’t Repeat Yourself”).

Here on the glom team, we’re big fans of Python. Have been for
years. In fact, Python is one of a tiny handful of languages that
could support something as powerful as glom.

But not all Python code is the same. We built glom to replace the kind
of Python that is about as un-Pythonic as code gets: simultaneously
fluffy, but also fragile. Simple transformations requiring countless
lines.

Before glom, the “right” way to write this transformation code was
verbose. Whether trying to fetch values nested within objects that may
contain attributes set to None, or performing a list comprehension
which may raise an exception, the correct code was many lines of
repetitious try-except blocks with a lot of hand-written exception
messages.

Written any more compactly, this Python would produce failures
expressed in errors too low-level to associate with the higher-level
transformation.

So the glom-less code was hard to change, hard to debug, or
both. glom specifications are none of the above, thanks to
meaningful, high-level error messages, a a built-in debugging
facility, and a compact, composable design.

In short, thanks to Python, glom can provide a Pythonic solution for
those times when pure Python wasn’t Pythonic enough.

How does glom work?

The core conceptual engine of glom is a very simple recursive loop. It
could fit on a business card. OK maybe a postcard.

In fact, here it is, in literate form, modified from this early point
in glom history [https://github.com/mahmoud/glom/blob/186757b47af3d33901df4bf715874b5f3c781d8f/glom/__init__.py#L74-L91]:

def glom(target, spec):

 # if the spec is a string or a Path, perform a deep-get on the target
 if isinstance(spec, (basestring, Path)):
 return _get_path(target, spec)

 # if the spec is callable, call it on the target
 elif callable(spec):
 return spec(target)

 # if the spec is a dict, assign the result of
 # the glom on the right to the field key on the left
 elif isinstance(spec, dict):
 ret = {}
 for field, subspec in spec.items():
 ret[field] = glom(target, subspec)
 return ret

 # if the spec is a list, run the spec inside the list on every
 # element in the list and return the new list
 elif isinstance(spec, list):
 subspec = spec[0]
 iterator = _get_iterator(target)
 return [glom(t, subspec) for t in iterator]

 # if the spec is a tuple of specs, chain the specs by running the
 # first spec on the target, then running the second spec on the
 # result of the first, and so on.
 elif isinstance(spec, tuple):
 res = target
 for subspec in spec:
 res = glom(res, subspec)
 return res
 else:
 raise TypeError('expected one of the above types')

Does Python need a null-coalescing operator?

Not technically a glom question, but it is frequently [https://mail.python.org/pipermail/python-ideas/2015-September/036289.html] asked [https://mail.python.org/pipermail/python-ideas/2016-November/043517.html]!

Null coalescing operators [https://en.wikipedia.org/wiki/Null_coalescing_operator] traverse nested objects and return null
(or None for us) on the first null or non-traversable object,
depending on implementation.

It’s basically a compact way of doing a deep getattr() [https://docs.python.org/3/library/functions.html#getattr] with a
default set to None.

Suffice to say that glom(target, T.a.b.c, default=None) achieves
this with ease, but I still want to revisit the question, since it’s
part of what got me thinking about glom in the first place.

First off, working in PayPal’s SOA environment, my team dealt with
literally tens of thousands of service objects, with object
definitions (from other teams) nested so deep as to make an
80-character line length laughable.

But null coalescing wouldn’t have helped, because in most of those
cases None wasn’t what we needed. We needed a good, automatically
generated error message when a deeply-nested field wasn’t accessible. Not
NoneType has no attribute 'x', but not plain old None either.

To solve this, I wrote my share of deep-gets before glom,
including the open-source boltons.iterutils.get_path() [http://boltons.readthedocs.io/en/latest/iterutils.html#boltons.iterutils.get_path]. For
whatever reason, it took me years of usage to realize just how often
the deep-gets were coupled with the other transformations that
glom enables. Now, I can never go back to a simple deep-get.

Another years-in-the-making observation, from my time doing JavaScript
then PHP then Django templates: all were much more lax on typing than
Python. Not because of a fierce belief in weak types, though. More
because when you’re templating, it’s inherently safer to return a
blank value on lookup failures. You’re so close to text formats that
this default achieves a pretty desirable result. While implicitly
doing this isn’t my cup of tea, and glom opts for explicit
Coalesce specifiers, this connection contributed to the
concept of glom as an “object templating” system.

glom by Analogy

glom is pure Python, and you don’t need to know anything but
Python to use it effectively.

Still, most everyone who encounters glom for the first time finds
analogies to tools they already know. Whether SQL, list
comprehensions, or HTML templates, there seems to be no end to the
similarities. Many of them intentional!

While glom is none of those tools, and none of those tools are glom, a
little comparison doesn’t hurt. This document collects analogies to
help guide understanding along.

Similarity to list comprehensions

One of the key inspirations for glom was the humble list
comprehension, one of my favorite Python features.

List comprehensions make your code look like its output, and that goes
a long way in readability. glom itself does list processing with
square brackets like [lambda x: x % 2], which actually makes it
more like a list comp and the old filter() function.

glom’s list processing differs in two ways:

	Required use of a callable or other glom spec, to enable deferred processing.

	Ability to return SKIP, which can exclude items from a list.

Similarity to templating (Jinja, Django, Mustache)

glom is a lot like templating engines, including modern formatters
like gofmt, but with all the format affordances distilled out. glom
doesn’t just work on HTML, XML, JSON, or even just strings.

glom works on objects, including functions, dicts, and all other
primitives. In fact, it would be safe to call glom an “object
templating” system.

A lot of insights for glom came (and continue to come) from writing ashes [https://github.com/mahmoud/ashes].

Similarity to SQL and GraphQL

In some ways, glom is a Python query language for Python
objects. But thanks to its restructuring capabilities, it’s much more
than SQL or GraphQL.

With SQL the primary abstraction is an table, or table-like
resultset. With GraphQL, the analogous answer to this is, of course,
the graph.

glom goes further, not only offering the Python object tree as a
graph, but also allowing you to change the shape of the data,
restructuring it while fetching and transforming values, which GraphQL
only minimally supports, and SQL barely supports at all. Table targets
get you table outputs.

Similiarity to validation (jsonschema, schema, cerberus)

glom is a generalized form of intake libraries, and will have
explicit validation [https://github.com/mahmoud/glom/issues/7] support soon. We definitely took schema [https://github.com/keleshev/schema]
becoming successful as a sign that others shared our appetite for
succinct, declarative Python datastructure manipulation.

More importantly, these libraries seem to excel at structuring and
parsing data, and don’t solve much on the other end. Translating
valid, structured objects like database models to JSON serializable
objects is glom’s forté.

Similarity to jq

The CLI that glom packs is very similar in function
to jq [https://stedolan.github.io/jq/], except it uses Python as its query language, instead of making
its own. Most importantly glom gives you a programmatic way forward [http://sedimental.org/glom_restructured_data.html#library-first-then-cli].

Similarity to XPath/XSLT

These hallowed technologies of yore, they were way ahead of the game
in many ways. glom intentionally avoids their purity and verbosity,
while trying to take as much inspiration as possible from their
function.

Others

Beyond what’s listed above, several other packages and language
features exist in glom’s ballpark, including:

	Specter (for Clojure) [https://github.com/nathanmarz/specter]

	Lenses (for Haskell) [https://hackage.haskell.org/package/lens]

	Dig (for Ruby Hashmaps) [https://ruby-doc.org/core-2.3.0_preview1/Hash.html#dig]

If you know of other useful comparisons, let us know [https://github.com/mahmoud/glom/issues/new]!

Examples & Snippets

glom can do a lot of things, in the right hands. This doc makes those
hands yours, through sample code of useful building blocks and common
glom tasks.

Contents

	Reversing a Target

	Iteration Result as Tuple

	Data-Driven Assignment

	Construct Instance

	Filtered Iteration

	Preserve Type

	Automatic Django ORM type handling

	Filter Iterable

	Lisp-style If Extension

	Parellel Evaluation of Sub-Specs

	Clamp Values

	Transform Tree

	Fix Up Strings in Parsed JSON

Note

All samples below assume from glom import glom, T, Call and any
other dependencies.

Reversing a Target

Here are a couple ways to reverse the current target. The first uses
basic Python builtins, the second uses the T object.

glom([1, 2, 3], (reversed, list))
glom([1, 2, 3], T[::-1])

Iteration Result as Tuple

The default glom iteration specifier returns a list, but it’s easy to
turn that list into a tuple. The following returns a tuple of
absolute-valued integers:

glom([-1, 2, -3], ([abs], tuple))

Data-Driven Assignment

glom’s dict specifier interprets the keys as constants. A different
technique is required if the dict keys are part of the target data
rather than spec.

glom({1:2, 2:3}, Call(dict, args=(T.items(),)))
glom({1:2, 2:3}, lambda t: dict(t.items()))
glom({1:2, 2:3}, dict)

Construct Instance

A common use case is to construct an instance. In the most basic
case, the default behavior on callable will suffice.

The following converts a list of ints to a list of
decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] objects.

glom([1, 2, 3], [Decimal])

If additional arguments are required, Call or lambda
are good options.

This converts a list to a collection.deque,
while specifying a max size of 10.

glom([1, 2, 3], Call(deque, args=[T, 10]))
glom([1, 2, 3], lambda t: deque(t, 10))

Filtered Iteration

Sometimes in addition to stepping through an iterable,
you’d like to omit some of the items from the result
set all together. Here are two ways
to filter the odd numbers from a list.

glom([1, 2, 3, 4, 5, 6], lambda t: [i for i in t if i % 2])
glom([1, 2, 3, 4, 5, 6], [lambda i: i if i % 2 else SKIP])

The second approach demonstrates the use of glom.SKIP to
back out of an execution.

This can also be combined with Coalesce to
filter items which are missing sub-attributes.

Here is an example of extracting the primary email from a group
of contacts, skipping where the email is empty string, None,
or the attribute is missing.

glom(contacts, [Coalesce('primary_email.email', skip=('', None), default=SKIP)])

Preserve Type

The iteration specifier will walk lists and tuples. In some cases it
would be convenient to preserve the target type in the result type.

This glomspec iterates over a tuple or list, adding one to each
element, and uses T to return a tuple or list depending
on the target input’s type.

glom((1, 2, 3), (
 {
 "type": type,
 "result": [lambda v: v + 1] # arbitrary operation
 }, T['type'](T['result'])))

This demonstrates an advanced technique – just as a tuple
can be used to process sub-specs “in series”, a dict
can be used to store intermediate results while processing
sub-specs “in parallel” so they can then be recombined later on.

Automatic Django ORM type handling

In day-to-day Django ORM usage, Managers [https://docs.djangoproject.com/en/2.0/topics/db/managers/] and QuerySets [https://docs.djangoproject.com/en/2.0/ref/models/querysets/] are
everywhere. They work great with glom, too, but they work even better
when you don’t have to call .all() all the time. Enable automatic
iteration using the following register() technique:

import glom
import django.db.models

glom.register(django.db.models.Manager, iterate=lambda m: m.all())
glom.register(django.db.models.QuerySet, iterate=lambda qs: qs.all())

Call this in settings or somewhere similarly early in your
application setup for the best results.

Filter Iterable

An iteration specifier can filter items out by using
SKIP as the default of a Check object.

glom(['cat', 1, 'dog', 2], [Check(types=str, default=SKIP)])
['cat', 'dog']

You can also truncate the list at the first failing check by using
STOP.

Lisp-style If Extension

Any class with a glomit method will be treated as a spec by glom.
As an example, here is a lisp-style If expression custom spec type:

class If(object):
 def __init__(self, cond, if_, else_=None):
 self.cond, self.if_, self.else_ = cond, if_, else_

 def glomit(self, target, scope):
 g = lambda spec: scope[glom](target, spec, scope)
 if g(self.cond):
 return g(self.if_)
 elif self.else_:
 return g(self.else_)
 else:
 return None

glom(1, If(bool, {'yes': T}, {'no': T}))
{'yes': 1}
glom(0, If(bool, {'yes': T}, {'no': T}))
{'no': 0}

Parellel Evaluation of Sub-Specs

This is another example of a simple glom extension.
Sometimes it is convenient to execute multiple glom-specs
in parallel against a target, and get a sequence of their
results.

class Seq(object):
 def __init__(self, *subspecs):
 self.subspecs = subspecs

 def glomit(self, target, scope):
 return [scope[glom](target, spec, scope) for spec in self.subspecs]

glom('1', Seq(float, int))
[1.0, 1]

Without this extension, the simplest way to achieve the same result is
with a dict:

glom('1', ({1: float, 2: int}, T.values()))

Clamp Values

A common numerical operation is to clamp values – if they
are above or below a certain value, assign them to that value.

Using a pattern-matching glom idiom, this can be implemented
simply:

glom(range(10), [(M < 7) | Literal(7)])
[0, 1, 2, 3, 4, 5, 6, 7, 7, 7]

What if you want to drop rather than clamp out-of-range values?

glom(range(10), [(M < 7) | Literal(SKIP)])
[0, 1, 2, 3, 4, 5, 6]

Transform Tree

With an arbitrary depth tree, Ref can be used to
express a recursive spec.

For example, this etree2dicts spec will recursively walk an ElementTree
instance and transform it from nested objects to nested dicts.

etree2dicts = Ref('ElementTree',
 {"tag": "tag", "text": "text", "attrib": "attrib", "children": (iter, [Ref('ElementTree')])})

Alternatively, say we only wanted to generate tuples of tag and children:

etree2tuples = Fill(Ref('ElementTree', (T.tag, Iter(Ref('ElementTree')).all())))

(Note also the use of Fill mode to easily construct a tuple.)

<html>
 <head>
 <title>the title</title>
 </head>
 <body id="the-body">
 <p>A paragraph</p>
 </body>
</html>

Will translate to the following tuples:

>>> etree = ElementTree.fromstring(html_text)
>>> glom(etree, etree2tuples)
('html', [('head', [('title', [])]), ('body', [('p', [])])])

Fix Up Strings in Parsed JSON

Tree-walking with Ref() combines powerfully with
pattern matching from Match().

In this case, consider that we want to transform parsed JSON recursively,
such that all unicodes are converted to native strings.

glom(json.loads(data),
 Ref('json',
 Match(Or(
 And(dict, {Ref('json'): Ref('json')}),
 And(list, [Ref('json')]),
 And(type(u''), Auto(str)),
 object))))

Match() above splits the Ref() evaluation into 4 cases:

	on dict [https://docs.python.org/3/library/stdtypes.html#dict], use Ref() to recurse for all keys and values

	on list [https://docs.python.org/3/library/stdtypes.html#list], use Ref() to recurse on each item

	on text objects (type(u'')) – py3 str [https://docs.python.org/3/library/stdtypes.html#str] or py2
unicode – transform the target with str [https://docs.python.org/3/library/stdtypes.html#str]

	for all other values (object), pass them through

As motivation for why this might come up: attributes, class names,
function names, and identifiers must be the native string type for a
given Python, i.e., bytestrings in Python 2 and unicode in Python 3.

glom Command-Line Interface

Note

glom’s CLI is still under construction. Definitely usable and
useful, but glom is a library first, and if you’re reading this,
the CLI should not be considered stable.

All the power of glom, without even opening your text editor!

$ glom --help
Usage: /home/mahmoud/virtualenvs/glom/bin/glom [FLAGS] [spec [target]]

Command-line interface to the glom library, providing nested data
access and data restructuring with the power of Python.

Flags:

--help / -h show this help message and exit
--target-file TARGET_FILE path to target data source (optional)
--target-format TARGET_FORMAT format of the source data (json or python)
 (defaults to 'json')
--spec-file SPEC_FILE path to glom spec definition (optional)
--spec-format SPEC_FORMAT format of the glom spec definition (json, python,
 python-full) (defaults to 'python')
--indent INDENT number of spaces to indent the result, 0 to disable
 pretty-printing (defaults to 2)
--debug interactively debug any errors that come up
--inspect interactively explore the data

The glom command will also read from standard input (stdin) and
process that data as the target.

Here’s an example, filtering a GitHub API example to something much
more flat and readable:

$ pip install glom
$ curl -s https://api.github.com/repos/mahmoud/glom/events \
 | glom '[{"type": "type", "date": "created_at", "user": "actor.login"}]'

This yields:

[
 {
 "date": "2018-05-09T03:39:44Z",
 "type": "WatchEvent",
 "user": "asapzacy"
 },
 {
 "date": "2018-05-08T22:51:46Z",
 "type": "WatchEvent",
 "user": "CameronCairns"
 },
 {
 "date": "2018-05-08T03:27:27Z",
 "type": "PushEvent",
 "user": "mahmoud"
 },
 {
 "date": "2018-05-08T03:27:27Z",
 "type": "PullRequestEvent",
 "user": "mahmoud"
 }
 ...
]

By default the CLI target is JSON and the spec is a Python
literal.

Note

Because the default CLI spec is a Python literal, there are no
lambdas and other Python/glom constructs available. These features
are gated behind the --spec-format python-full option to avoid
code injection and other unwanted consequences.

The --debug and --inspect flags are useful for exploring
data. Note that they are not available when piping data through
stdin. Save that API response to a file and use --target-file to
do your interactive experimenting.

Core glom API

glom gets results.

The glom package has one central entrypoint,
glom.glom(). Everything else in the package revolves around that
one function. Sometimes, big things come in small packages.

A couple of conventional terms you’ll see repeated many times below:

	target - glom is built to work on any data, so we simply
refer to the object being accessed as the “target”

	spec - (aka “glomspec”, short for specification) The
accompanying template used to specify the structure of the return
value.

Now that you know the terms, let’s take a look around glom’s powerful
semantics.

See also

As the glom API grows, we’ve refactored the docs into separate
domains. The core API is below. More specialized types can also be
found in the following docs:

	
	Assignment & Mutation

	Streaming & Iteration

	
	Reduction & Grouping

	Matching & Validation

Longtime glom docs readers: thanks in advance for reporting/fixing
any broken links you may find.

Contents

	The glom Function

	Basic Specifiers

	Object-Oriented Access and Method Calls with T

	Defaults with Coalesce

	Calling Callables with Invoke

	Alternative approach to functions: Call

	Self-Referential Specs

	Core Exceptions

	Setup and Registration

The glom Function

Where it all happens. The reason for the season. The eponymous
function, glom().

	
glom.glom(target, spec, **kwargs)

	Access or construct a value from a given target based on the
specification declared by spec.

Accessing nested data, aka deep-get:

>>> target = {'a': {'b': 'c'}}
>>> glom(target, 'a.b')
'c'

Here the spec was just a string denoting a path,
'a.b.. As simple as it should be. The next example shows
how to use nested data to access many fields at once, and make
a new nested structure.

Constructing, or restructuring more-complicated nested data:

>>> target = {'a': {'b': 'c', 'd': 'e'}, 'f': 'g', 'h': [0, 1, 2]}
>>> spec = {'a': 'a.b', 'd': 'a.d', 'h': ('h', [lambda x: x * 2])}
>>> output = glom(target, spec)
>>> pprint(output)
{'a': 'c', 'd': 'e', 'h': [0, 2, 4]}

glom also takes a keyword-argument, default. When set,
if a glom operation fails with a GlomError, the
default will be returned, very much like
dict.get() [https://docs.python.org/3/library/stdtypes.html#dict.get]:

>>> glom(target, 'a.xx', default='nada')
'nada'

The skip_exc keyword argument controls which errors should
be ignored.

>>> glom({}, lambda x: 100.0 / len(x), default=0.0, skip_exc=ZeroDivisionError)
0.0

	Parameters

	
	target (object [https://docs.python.org/3/library/functions.html#object]) – the object on which the glom will operate.

	spec (object [https://docs.python.org/3/library/functions.html#object]) – Specification of the output object in the form
of a dict, list, tuple, string, other glom construct, or
any composition of these.

	default (object [https://docs.python.org/3/library/functions.html#object]) – An optional default to return in the case
an exception, specified by skip_exc, is raised.

	skip_exc (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – An optional exception or tuple of
exceptions to ignore and return default (None if
omitted). If skip_exc and default are both not set,
glom raises errors through.

	scope (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional data that can be accessed
via S inside the glom-spec.

It’s a small API with big functionality, and glom’s power is
only surpassed by its intuitiveness. Give it a whirl!

Basic Specifiers

Basic glom specifications consist of dict, list, tuple,
str, and callable objects. However, as data calls for more
complicated interactions, glom provides specialized specifier
types that can be used with the basic set of Python builtins.

	
class glom.Path(*path_parts)

	Path objects specify explicit paths when the default
'a.b.c'-style general access syntax won’t work or isn’t
desirable. Use this to wrap ints, datetimes, and other valid
keys, as well as strings with dots that shouldn’t be expanded.

>>> target = {'a': {'b': 'c', 'd.e': 'f', 2: 3}}
>>> glom(target, Path('a', 2))
3
>>> glom(target, Path('a', 'd.e'))
'f'

Paths can be used to join together other Path objects, as
well as T objects:

>>> Path(T['a'], T['b'])
T['a']['b']
>>> Path(Path('a', 'b'), Path('c', 'd'))
Path('a', 'b', 'c', 'd')

Paths also support indexing and slicing, with each access
returning a new Path object:

>>> path = Path('a', 'b', 1, 2)
>>> path[0]
Path('a')
>>> path[-2:]
Path(1, 2)

	
class glom.Literal(value)

	Literal objects specify literal values in rare cases when part of
the spec should not be interpreted as a glommable
subspec. Wherever a Literal object is encountered in a spec, it is
replaced with its wrapped value in the output.

>>> target = {'a': {'b': 'c'}}
>>> spec = {'a': 'a.b', 'readability': Literal('counts')}
>>> pprint(glom(target, spec))
{'a': 'c', 'readability': 'counts'}

Instead of accessing 'counts' as a key like it did with
'a.b', glom() just unwrapped the literal and
included the value.

Literal takes one argument, the literal value that should appear
in the glom output.

This could also be achieved with a callable, e.g., lambda x:
'literal_string' in the spec, but using a Literal
object adds explicitness, code clarity, and a clean repr() [https://docs.python.org/3/library/functions.html#repr].

	
class glom.Spec(spec, scope=None)

	Spec objects serve three purposes, here they are, roughly ordered
by utility:

	As a form of compiled or “curried” glom call, similar to
Python’s built-in re.compile() [https://docs.python.org/3/library/re.html#re.compile].

	A marker as an object as representing a spec rather than a
literal value in certain cases where that might be ambiguous.

	A way to update the scope within another Spec.

In the second usage, Spec objects are the complement to
Literal, wrapping a value and marking that it
should be interpreted as a glom spec, rather than a literal value.
This is useful in places where it would be interpreted as a value
by default. (Such as T[key], Call(func) where key and func are
assumed to be literal values and not specs.)

	Parameters

	
	spec – The glom spec.

	scope (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – additional values to add to the scope when
evaluating this Spec

See also

Note that many of the Specifier types previously mentioned here
have moved into their own docs, among them:

	
	Assignment & Mutation

	Streaming & Iteration

	
	Reduction & Grouping

	Matching & Validation

Object-Oriented Access and Method Calls with T

glom’s shortest-named feature may be its most powerful.

	
glom.T = T

	T, short for “target”. A singleton object that enables
object-oriented expression of a glom specification.

Note

T is a singleton, and does not need to be constructed.

Basically, think of T as your data’s stunt double. Everything
that you do to T will be recorded and executed during the
glom() call. Take this example:

>>> spec = T['a']['b']['c']
>>> target = {'a': {'b': {'c': 'd'}}}
>>> glom(target, spec)
'd'

So far, we’ve relied on the 'a.b.c'-style shorthand for
access, or used the Path objects, but if you want
to explicitly do attribute and key lookups, look no further than
T.

But T doesn’t stop with unambiguous access. You can also call
methods and perform almost any action you would with a normal
object:

>>> spec = ('a', (T['b'].items(), list)) # reviewed below
>>> glom(target, spec)
[('c', 'd')]

A T object can go anywhere in the spec. As seen in the example
above, we access 'a', use a T to get 'b' and iterate
over its items, turning them into a list.

You can even use T with Call to construct objects:

>>> class ExampleClass(object):
... def __init__(self, attr):
... self.attr = attr
...
>>> target = {'attr': 3.14}
>>> glom(target, Call(ExampleClass, kwargs=T)).attr
3.14

On a further note, while lambda works great in glom specs, and
can be very handy at times, T and Call
eliminate the need for the vast majority of lambda usage with
glom.

Unlike lambda and other functions, T roundtrips
beautifully and transparently:

>>> T['a'].b['c']('success')
T['a'].b['c']('success')

T-related access errors raise a PathAccessError
during the glom() call.

Note

While T is clearly useful, powerful, and here to stay, its
semantics are still being refined. Currently, operations beyond
method calls and attribute/item access are considered
experimental and should not be relied upon.

Defaults with Coalesce

Data isn’t always where or what you want it to be. Use these
specifiers to declare away overly branchy procedural code.

	
class glom.Coalesce(*subspecs, **kwargs)

	Coalesce objects specify fallback behavior for a list of
subspecs.

Subspecs are passed as positional arguments, and keyword arguments
control defaults. Each subspec is evaluated in turn, and if none
match, a CoalesceError is raised, or a default is returned,
depending on the options used.

Note

This operation may seem very familar if you have experience with
SQL [https://en.wikipedia.org/w/index.php?title=Null_(SQL)&oldid=833093792#COALESCE] or even C# and others [https://en.wikipedia.org/w/index.php?title=Null_coalescing_operator&oldid=839493322#C#].

In practice, this fallback behavior’s simplicity is only surpassed
by its utility:

>>> target = {'c': 'd'}
>>> glom(target, Coalesce('a', 'b', 'c'))
'd'

glom tries to get 'a' from target, but gets a
KeyError. Rather than raise a PathAccessError as usual,
glom coalesces into the next subspec, 'b'. The process
repeats until it gets to 'c', which returns our value,
'd'. If our value weren’t present, we’d see:

>>> target = {}
>>> glom(target, Coalesce('a', 'b'))
Traceback (most recent call last):
...
CoalesceError: no valid values found. Tried ('a', 'b') and got (PathAccessError, PathAccessError) ...

Same process, but because target is empty, we get a
CoalesceError. If we want to avoid an exception, and we
know which value we want by default, we can set default:

>>> target = {}
>>> glom(target, Coalesce('a', 'b', 'c'), default='d-fault')
'd-fault'

'a', 'b', and 'c' weren’t present so we got 'd-fault'.

	Parameters

	
	subspecs – One or more glommable subspecs

	default – A value to return if no subspec results in a valid value

	default_factory – A callable whose result will be returned as a default

	skip – A value, tuple of values, or predicate function
representing values to ignore

	skip_exc – An exception or tuple of exception types to catch and
move on to the next subspec. Defaults to GlomError, the
parent type of all glom runtime exceptions.

If all subspecs produce skipped values or exceptions, a
CoalesceError will be raised. For more examples, check out
the glom Tutorial, which makes extensive use of Coalesce.

	
glom.SKIP = Sentinel('SKIP')

	The SKIP singleton can be returned from a function or included
via a Literal to cancel assignment into the output
object.

>>> target = {'a': 'b'}
>>> spec = {'a': lambda t: t['a'] if t['a'] == 'a' else SKIP}
>>> glom(target, spec)
{}
>>> target = {'a': 'a'}
>>> glom(target, spec)
{'a': 'a'}

Mostly used to drop keys from dicts (as above) or filter objects from
lists.

Note

SKIP was known as OMIT in versions 18.3.1 and prior. Versions 19+
will remove the OMIT alias entirely.

	
glom.STOP = Sentinel('STOP')

	The STOP singleton can be used to halt iteration of a list or
execution of a tuple of subspecs.

>>> target = range(10)
>>> spec = [lambda x: x if x < 5 else STOP]
>>> glom(target, spec)
[0, 1, 2, 3, 4]

Calling Callables with Invoke

New in version 19.10.0.

From calling functions to constructing objects, it’s hardly Python if
you’re not invoking callables. By default, single-argument functions
work great on their own in glom specs. The function gets passed the
target and it just works:

>>> glom(['1', '3', '5'], [int])
[1, 3, 5]

Zero-argument and multi-argument functions get a lot trickier,
especially when more than one of those arguments comes from the
target, thus the Invoke spec.

	
class glom.Invoke(func)

	Specifier type designed for easy invocation of callables from glom.

	Parameters

	func (callable) – A function or other callable object.

Invoke is similar to functools.partial() [https://docs.python.org/3/library/functools.html#functools.partial], but with the
ability to set up a “templated” call which interleaves constants and
glom specs.

For example, the following creates a spec which can be used to
check if targets are integers:

>>> is_int = Invoke(isinstance).specs(T).constants(int)
>>> glom(5, is_int)
True

And this composes like any other glom spec:

>>> target = [7, object(), 9]
>>> glom(target, [is_int])
[True, False, True]

Another example, mixing positional and keyword arguments:

>>> spec = Invoke(sorted).specs(T).constants(key=int, reverse=True)
>>> target = ['10', '5', '20', '1']
>>> glom(target, spec)
['20', '10', '5', '1']

Invoke also helps with evaluating zero-argument functions:

>>> glom(target={}, spec=Invoke(int))
0

(A trivial example, but from timestamps to UUIDs, zero-arg calls do come up!)

Note

Invoke is mostly for functions, object construction, and callable
objects. For calling methods, consider the T object.

	
constants(*a, **kw)

	Returns a new Invoke spec, with the provided positional
and keyword argument values stored for passing to the
underlying function.

>>> spec = Invoke(T).constants(5)
>>> glom(range, (spec, list))
[0, 1, 2, 3, 4]

Subsequent positional arguments are appended:

>>> spec = Invoke(T).constants(2).constants(10, 2)
>>> glom(range, (spec, list))
[2, 4, 6, 8]

Keyword arguments also work as one might expect:

>>> round_2 = Invoke(round).constants(ndigits=2).specs(T)
>>> glom(3.14159, round_2)
3.14

constants() and other Invoke
methods may be called multiple times, just remember that every
call returns a new spec.

	
classmethod specfunc(spec)

	Creates an Invoke instance where the function is
indicated by a spec.

>>> spec = Invoke.specfunc('func').constants(5)
>>> glom({'func': range}, (spec, list))
[0, 1, 2, 3, 4]

	
specs(*a, **kw)

	Returns a new Invoke spec, with the provided positional
and keyword arguments stored to be interpreted as specs, with
the results passed to the underlying function.

>>> spec = Invoke(range).specs('value')
>>> glom({'value': 5}, (spec, list))
[0, 1, 2, 3, 4]

Subsequent positional arguments are appended:

>>> spec = Invoke(range).specs('start').specs('end', 'step')
>>> target = {'start': 2, 'end': 10, 'step': 2}
>>> glom(target, (spec, list))
[2, 4, 6, 8]

Keyword arguments also work as one might expect:

>>> multiply = lambda x, y: x * y
>>> times_3 = Invoke(multiply).constants(y=3).specs(x='value')
>>> glom({'value': 5}, times_3)
15

specs() and other Invoke
methods may be called multiple times, just remember that every
call returns a new spec.

	
star(args=None, kwargs=None)

	Returns a new Invoke spec, with args and/or kwargs
specs set to be “starred” or “star-starred” (respectively)

>>> import os.path
>>> spec = Invoke(os.path.join).star(args='path')
>>> target = {'path': ['path', 'to', 'dir']}
>>> glom(target, spec)
'path/to/dir'

	Parameters

	
	args (spec) – A spec to be evaluated and “starred” into the
underlying function.

	kwargs (spec) – A spec to be evaluated and “star-starred” into
the underlying function.

One or both of the above arguments should be set.

The star(), like other Invoke
methods, may be called multiple times. The args and kwargs
will be stacked in the order in which they are provided.

Alternative approach to functions: Call

An earlier, more primitive approach to callables in glom was the Call
specifier type.

Warning

Given superiority of its successor, Invoke,
the Call type may be deprecated in a future release.

	
class glom.Call(func=None, args=None, kwargs=None)

	Call specifies when a target should be passed to a function,
func.

Call is similar to partial() [https://docs.python.org/3/library/functools.html#functools.partial] in that
it is no more powerful than lambda or other functions, but
it is designed to be more readable, with a better repr.

	Parameters

	func (callable) – a function or other callable to be called with
the target

Call combines well with T to construct objects. For
instance, to generate a dict and then pass it to a constructor:

>>> class ExampleClass(object):
... def __init__(self, attr):
... self.attr = attr
...
>>> target = {'attr': 3.14}
>>> glom(target, Call(ExampleClass, kwargs=T)).attr
3.14

This does the same as glom(target, lambda target:
ExampleClass(**target)), but it’s easy to see which one reads
better.

Note

Call is mostly for functions. Use a T object
if you need to call a method.

Warning

Call has a successor with a fuller-featured API, new
in 19.10.0: the Invoke specifier type.

Self-Referential Specs

Sometimes nested data repeats itself, either recursive structure or
just through redundancy.

	
class glom.Ref(name, subspec=Sentinel('_MISSING'))

	Name a part of a spec and refer to it elsewhere in the same spec,
useful for trees and other self-similar data structures.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the spec to reference.

	subspec – Pass a spec to name it name, or leave unset to refer
to an already-named spec.

Core Exceptions

Not all data is going to match specifications. Luckily, glom errors
are designed to be as readable and actionable as possible.

All glom exceptions inherit from GlomError, described below,
along with other core exception types. For more details about handling
and debugging exceptions, see “Exceptions & Debugging”.

	
class glom.PathAccessError(exc, path, part_idx)

	This GlomError subtype represents a failure to access an
attribute as dictated by the spec. The most commonly-seen error
when using glom, it maintains a copy of the original exception and
produces a readable error message for easy debugging.

If you see this error, you may want to:

	Check the target data is accurate using Inspect

	Catch the exception and return a semantically meaningful error message

	Use glom.Coalesce to specify a default

	Use the top-level default kwarg on glom()

In any case, be glad you got this error and not the one it was
wrapping!

	Parameters

	
	exc (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – The error that arose when we tried to access
path. Typically an instance of KeyError, AttributeError,
IndexError, or TypeError, and sometimes others.

	path (Path) – The full Path glom was in the middle of accessing
when the error occurred.

	part_idx (int [https://docs.python.org/3/library/functions.html#int]) – The index of the part of the path that caused
the error.

>>> target = {'a': {'b': None}}
>>> glom(target, 'a.b.c')
Traceback (most recent call last):
...
PathAccessError: could not access 'c', part 2 of Path('a', 'b', 'c'), got error: ...

	
class glom.CoalesceError(coal_obj, skipped, path)

	This GlomError subtype is raised from within a
Coalesce spec’s processing, when none of the subspecs
match and no default is provided.

The exception object itself keeps track of several values which
may be useful for processing:

	Parameters

	
	coal_obj (Coalesce) – The original failing spec, see
Coalesce’s docs for details.

	skipped (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of ignored values and exceptions, in the
order that their respective subspecs appear in the original
coal_obj.

	path – Like many GlomErrors, this exception knows the path at
which it occurred.

>>> target = {}
>>> glom(target, Coalesce('a', 'b'))
Traceback (most recent call last):
...
CoalesceError: no valid values found. Tried ('a', 'b') and got (PathAccessError, PathAccessError) ...

	
class glom.UnregisteredTarget(op, target_type, type_map, path)

	This GlomError subtype is raised when a spec calls for an
unsupported action on a target type. For instance, trying to
iterate on an non-iterable target:

>>> glom(object(), ['a.b.c'])
Traceback (most recent call last):
...
UnregisteredTarget: target type 'object' not registered for 'iterate', expected one of registered types: (...)

It should be noted that this is a pretty uncommon occurrence in
production glom usage. See the Setup and Registration
section for details on how to avoid this error.

An UnregisteredTarget takes and tracks a few values:

	Parameters

	
	op (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the operation being performed (‘get’ or ‘iterate’)

	target_type (type [https://docs.python.org/3/library/functions.html#type]) – The type of the target being processed.

	type_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A mapping of target types that do support this operation

	path – The path at which the error occurred.

	
class glom.GlomError

	The base exception for all the errors that might be raised from
glom() processing logic.

By default, exceptions raised from within functions passed to glom
(e.g., len, sum, any lambda) will not be wrapped in a
GlomError.

Setup and Registration

When it comes to targets, glom() will operate on the
vast majority of objects out there in Python-land. However, for that
very special remainder, glom is readily extensible!

	
glom.register(target_type, **kwargs)

	Register target_type so glom() will
know how to handle instances of that type as targets.

	Parameters

	
	target_type (type [https://docs.python.org/3/library/functions.html#type]) – A type expected to appear in a glom()
call target

	get (callable) – A function which takes a target object and
a name, acting as a default accessor. Defaults to
getattr() [https://docs.python.org/3/library/functions.html#getattr].

	iterate (callable) – A function which takes a target object
and returns an iterator. Defaults to iter() [https://docs.python.org/3/library/functions.html#iter] if
target_type appears to be iterable.

	exact (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to match instances of subtypes
of target_type.

Note

The module-level register() function affects the
module-level glom() function’s behavior. If this
global effect is undesirable for your application, or
you’re implementing a library, consider instantiating a
Glommer instance, and using the
register() and Glommer.glom()
methods instead.

	
class glom.Glommer(**kwargs)

	The Glommer type mostly serves to encapsulate type
registration context so that advanced uses of glom don’t need to
worry about stepping on each other.

Glommer objects are lightweight and, once instantiated, provide
a glom() method:

>>> glommer = Glommer()
>>> glommer.glom({}, 'a.b.c', default='d')
'd'
>>> Glommer().glom({'vals': list(range(3))}, ('vals', len))
3

Instances also provide register() method for
localized control over type handling.

	Parameters

	register_default_types (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to enable the
handling behaviors of the default glom(). These
default actions include dict access, list and iterable
iteration, and generic object attribute access. Defaults to
True.

Assignment & Mutation

By default, glom aims to safely return a transformed copy of your
data. But sometimes you really need to transform an existing object.

When you already have a large or complex bit of nested data that you
are sure you want to modify in-place, glom has you covered, with the
assign() function, and the Assign() specifier
type.

Contents

	Assignment

	Deletion

	Exceptions

Assignment

Deeply assign within an existing structure, given a path and a value.

	
glom.assign(obj, path, val, missing=None)

	New in glom 18.3.0

The assign() function provides convenient “deep set”
functionality, modifying nested data structures in-place:

>>> target = {'a': [{'b': 'c'}, {'d': None}]}
>>> _ = assign(target, 'a.1.d', 'e') # let's give 'd' a value of 'e'
>>> pprint(target)
{'a': [{'b': 'c'}, {'d': 'e'}]}

Missing structures can also be automatically created with the
missing parameter. For more information and examples, see the
Assign specifier type, which this function wraps.

	
class glom.Assign(path, val, missing=None)

	New in glom 18.3.0

The Assign specifier type enables glom to modify the target,
performing a “deep-set” to mirror glom’s original deep-get use
case.

Assign can be used to perform spot modifications of large data
structures when making a copy is not desired:

deep assignment into a nested dictionary
>>> target = {'a': {}}
>>> spec = Assign('a.b', 'value')
>>> _ = glom(target, spec)
>>> pprint(target)
{'a': {'b': 'value'}}

The value to be assigned can also be a Spec, which
is useful for copying values around within the data structure:

copying one nested value to another
>>> _ = glom(target, Assign('a.c', Spec('a.b')))
>>> pprint(target)
{'a': {'b': 'value', 'c': 'value'}}

Another handy use of Assign is to deep-apply a function:

sort a deep nested list
>>> target={'a':{'b':[3,1,2]}}
>>> _ = glom(target, Assign('a.b', Spec(('a.b',sorted))))
>>> pprint(target)
{'a': {'b': [1, 2, 3]}}

Like many other specifier types, Assign’s destination path can be
a T expression, for maximum control:

changing the error message of an exception in an error list
>>> err = ValueError('initial message')
>>> target = {'errors': [err]}
>>> _ = glom(target, Assign(T['errors'][0].args, ('new message',)))
>>> str(err)
'new message'

Assign has built-in support for assigning to attributes of
objects, keys of mappings (like dicts), and indexes of sequences
(like lists). Additional types can be registered through
register() using the "assign" operation name.

Attempting to assign to an immutable structure, like a
tuple [https://docs.python.org/3/library/stdtypes.html#tuple], will result in a
PathAssignError. Attempting to assign to a path
that doesn’t exist will raise a PathAccessError.

To automatically backfill missing structures, you can pass a
callable to the missing argument. This callable will be called
for each path segment along the assignment which is not
present.

>>> target = {}
>>> assign(target, 'a.b.c', 'hi', missing=dict)
{'a': {'b': {'c': 'hi'}}}

Deletion

Delete attributes from objects and keys from containers.

	
glom.delete(obj, path, ignore_missing=False)

	The delete() function provides “deep del” functionality,
modifying nested data structures in-place:

>>> target = {'a': [{'b': 'c'}, {'d': None}]}
>>> delete(target, 'a.0.b')
{'a': [{}, {'d': None}]}

Attempting to delete missing keys, attributes, and indexes will
raise a PathDeleteError. To ignore these errors, use the
ignore_missing argument:

>>> delete(target, 'does_not_exist', ignore_missing=True)
{'a': [{}, {'d': None}]}

For more information and examples, see the Delete
specifier type, which this convenience function wraps.

New in version 20.5.0.

	
class glom.Delete(path, ignore_missing=False)

	In addition to glom’s core “deep-get” and Assign’s “deep-set”,
the Delete specifier type performs a “deep-del”, which can
remove items from larger data structures by key, attribute, and
index.

>>> target = {'dict': {'x': [5, 6, 7]}}
>>> glom(target, Delete('dict.x.1'))
{'dict': {'x': [5, 7]}}
>>> glom(target, Delete('dict.x'))
{'dict': {}}

If a target path is missing, a PathDeleteError will be
raised. To ignore missing targets, use the ignore_missing
flag:

>>> glom(target, Delete('does_not_exist', ignore_missing=True))
{'dict': {}}

Delete has built-in support for deleting attributes of
objects, keys of dicts, and indexes of sequences
(like lists). Additional types can be registered through
register() using the "delete" operation name.

New in version 20.5.0.

Exceptions

	
class glom.PathAssignError(exc, path, dest_name)

	This GlomError subtype is raised when an assignment fails,
stemming from an assign() call or other
Assign usage.

One example would be assigning to an out-of-range position in a list:

>>> assign(["short", "list"], Path(5), 'too far')
Traceback (most recent call last):
...
PathAssignError: could not assign 5 on object at Path(), got error: IndexError(...

Other assignment failures could be due to assigning to an
@property or exception being raised inside a __setattr__().

	
class glom.PathDeleteError(exc, path, dest_name)

	This GlomError subtype is raised when an assignment fails,
stemming from an delete() call or other
Delete usage.

One example would be deleting an out-of-range position in a list:

>>> delete(["short", "list"], Path(5))
Traceback (most recent call last):
...
PathDeleteError: could not delete 5 on object at Path(), got error: IndexError(...

Other assignment failures could be due to deleting a read-only
@property or exception being raised inside a __delattr__().

Streaming & Iteration

New in version 19.10.0.

glom’s helpers for streaming use cases.

Specifier types which yield their results incrementally so that they
can be applied to targets which are themselves streaming (e.g. chunks
of rows from a database, lines from a file) without excessive memory
usage.

glom’s streaming functionality revolves around a single Iter
Specifier type, which has methods to transform the target stream.

	
class glom.Iter(subspec=T, **kwargs)

	Iter() is glom’s counterpart to Python’s built-in iter() [https://docs.python.org/3/library/functions.html#iter]
function. Given an iterable target, Iter() yields the result
of applying the passed spec to each element of the target, similar
to the built-in [] spec, but streaming.

The following turns a list of strings into integers using Iter(),
before deduplicating and converting it to a tuple:

>>> glom(['1', '2', '1', '3'], (Iter(int), set, tuple))
(1, 2, 3)

Iter() also has many useful methods which can be chained to
compose a stream processing pipeline. The above can also be
written as:

>>> glom(['1', '2', '1', '3'], (Iter().map(int).unique(), tuple))
(1, 2, 3)

Iter() also respects glom’s SKIP and
STOP singletons for filtering and breaking
iteration.

	Parameters

	
	subspec – A subspec to be applied on each element from the iterable.

	sentinel – Keyword-only argument, which, when found in the
iterable stream, causes the iteration to stop. Same as with the
built-in iter() [https://docs.python.org/3/library/functions.html#iter].

	
map(subspec)

	Return a new Iter() spec which will apply the provided
subspec to each element of the iterable.

>>> glom(range(5), Iter().map(lambda x: x * 2).all())
[0, 2, 4, 6, 8]

Because a spec can be a callable, Iter.map() does
everything the built-in map() does, but with the full
power of glom specs.

>>> glom(['a', 'B', 'C'], Iter().map(T.islower()).all())
[True, False, False]

	
filter(key=T)

	Return a new Iter() spec which will include only elements matching the
given key.

>>> glom(range(6), Iter().filter(lambda x: x % 2).all())
[1, 3, 5]

Because a spec can be a callable, Iter.filter() does
everything the built-in filter() does, but with the full
power of glom specs. For even more power, combine,
Iter.filter() with Check().

>>> # PROTIP: Python's ints know how many binary digits they require, using the bit_length method
>>> glom(range(9), Iter().filter(Check(T.bit_length(), one_of=(2, 4), default=SKIP)).all())
[2, 3, 8]

	
chunked(size, fill=Sentinel('_MISSING'))

	Return a new Iter() spec which groups elements in the iterable
into lists of length size.

If the optional fill argument is provided, iterables not
evenly divisible by size will be padded out by the fill
constant. Otherwise, the final chunk will be shorter than size.

>>> list(glom(range(10), Iter().chunked(3)))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> list(glom(range(10), Iter().chunked(3, fill=None)))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]

	
split(sep=None, maxsplit=None)

	Return a new Iter() spec which will lazily split an iterable based
on a separator (or list of separators), sep. Like
str.split() [https://docs.python.org/3/library/stdtypes.html#str.split], but for all iterables.

split_iter() yields lists of non-separator values. A separator will
never appear in the output.

>>> target = [1, 2, None, None, 3, None, 4, None]
>>> list(glom(target, Iter().split()))
[[1, 2], [3], [4]]

Note that split_iter is based on str.split(), so if
sep is None, split() groups separators. If empty lists
are desired between two contiguous None values, simply use
sep=[None]:

>>> list(glom(target, Iter().split(sep=[None])))
[[1, 2], [], [3], [4], []]

A max number of splits may also be set:

>>> list(glom(target, Iter().split(maxsplit=2)))
[[1, 2], [3], [4, None]]

	
flatten()

	Returns a new Iter() instance which combines iterables into a
single iterable.

>>> target = [[1, 2], [3, 4], [5]]
>>> list(glom(target, Iter().flatten()))
[1, 2, 3, 4, 5]

	
unique(key=T)

	Return a new Iter() spec which lazily filters out duplicate
values, i.e., only the first appearance of a value in a stream will
be yielded.

>>> target = list('gloMolIcious')
>>> out = list(glom(target, Iter().unique(T.lower())))
>>> print(''.join(out))
gloMIcus

	
limit(count)

	A convenient alias for slice(), which takes a single
argument, count, the max number of items to yield.

	
slice(*args)

	Returns a new Iter() spec which trims iterables in the
same manner as itertools.islice() [https://docs.python.org/3/library/itertools.html#itertools.islice].

>>> target = [0, 1, 2, 3, 4, 5]
>>> glom(target, Iter().slice(3).all())
[0, 1, 2]
>>> glom(target, Iter().slice(2, 4).all())
[2, 3]

This method accepts only positional arguments.

	
takewhile(key=T)

	Returns a new Iter() spec which stops the stream once
key becomes falsy.

>>> glom([3, 2, 0, 1], Iter().takewhile().all())
[3, 2]

itertools.takewhile() [https://docs.python.org/3/library/itertools.html#itertools.takewhile] for more details.

	
dropwhile(key=T)

	Returns a new Iter() spec which drops stream items until
key becomes falsy.

>>> glom([0, 0, 3, 2, 0], Iter().dropwhile(lambda t: t < 1).all())
[3, 2, 0]

Note that while similar to Iter.filter(), the filter
only applies to the beginning of the stream. In a way,
Iter.dropwhile() can be thought of as
lstrip() [https://docs.python.org/3/library/stdtypes.html#str.lstrip] for streams. See
itertools.dropwhile() [https://docs.python.org/3/library/itertools.html#itertools.dropwhile] for more details.

	
all()

	A convenience method which returns a new spec which turns an
iterable into a list.

>>> glom(range(5), Iter(lambda t: t * 2).all())
[0, 2, 4, 6, 8]

Note that this spec will always consume the whole iterable, and as
such, the spec returned is not an Iter() instance.

	
first(key=T, default=None)

	A convenience method for lazily yielding a single truthy item from
an iterable.

>>> target = [False, 1, 2, 3]
>>> glom(target, Iter().first())
1

This method takes a condition, key, which can also be a
glomspec, as well as a default, in case nothing matches the
condition.

As this spec yields at most one item, and not an iterable, the
spec returned from this method is not an Iter() instance.

Reduction & Grouping

This document contains glom techniques for transforming a collection
of data to a smaller set, otherwise known as “grouping” or
“reduction”.

Combining iterables with Flatten and Merge

New in version 19.1.0.

Got lists of lists? Sets of tuples? A sequence of dicts (but only want
one)? Do you find yourself reaching for Python’s builtin sum() [https://docs.python.org/3/library/functions.html#sum]
and reduce()? To handle these situations and more, glom has five
specifier types and two convenience functions:

	
glom.flatten(target, **kwargs)

	At its most basic, flatten() turns an iterable of iterables
into a single list. But it has a few arguments which give it more
power:

	Parameters

	
	init (callable) – A function or type which gives the initial
value of the return. The value must support addition. Common
values might be list [https://docs.python.org/3/library/stdtypes.html#list] (the default), tuple [https://docs.python.org/3/library/stdtypes.html#tuple],
or even int [https://docs.python.org/3/library/functions.html#int]. You can also pass init="lazy" to
get a generator.

	levels (int [https://docs.python.org/3/library/functions.html#int]) – A positive integer representing the number of
nested levels to flatten. Defaults to 1.

	spec – The glomspec to fetch before flattening. This defaults to the
the root level of the object.

Usage is straightforward.

>>> target = [[1, 2], [3], [4]]
>>> flatten(target)
[1, 2, 3, 4]

Because integers themselves support addition, we actually have two
levels of flattening possible, to get back a single integer sum:

>>> flatten(target, init=int, levels=2)
10

However, flattening a non-iterable like an integer will raise an
exception:

>>> target = 10
>>> flatten(target)
Traceback (most recent call last):
...
FoldError: can only Flatten on iterable targets, not int type (...)

By default, flatten() will add a mix of iterables together,
making it a more-robust alternative to the built-in
sum(list_of_lists, list()) trick most experienced Python
programmers are familiar with using:

>>> list_of_iterables = [range(2), [2, 3], (4, 5)]
>>> sum(list_of_iterables, [])
Traceback (most recent call last):
...
TypeError: can only concatenate list (not "tuple") to list

Whereas flatten() handles this just fine:

>>> flatten(list_of_iterables)
[0, 1, 2, 3, 4, 5]

The flatten() function is a convenient wrapper around the
Flatten specifier type. For embedding in larger specs,
and more involved flattening, see Flatten and its base,
Fold.

	
class glom.Flatten(subspec=T, init=<type 'list'>)

	The Flatten specifier type is used to combine iterables. By
default it flattens an iterable of iterables into a single list
containing items from all iterables.

>>> target = [[1], [2, 3]]
>>> glom(target, Flatten())
[1, 2, 3]

You can also set init to "lazy", which returns a generator
instead of a list. Use this to avoid making extra lists and other
collections during intermediate processing steps.

	
glom.merge(target, **kwargs)

	By default, merge() turns an iterable of mappings into a
single, merged dict [https://docs.python.org/3/library/stdtypes.html#dict], leveraging the behavior of the
update() [https://docs.python.org/3/library/stdtypes.html#dict.update] method. A new mapping is created and none of
the passed mappings are modified.

>>> target = [{'a': 'alpha'}, {'b': 'B'}, {'a': 'A'}]
>>> res = merge(target)
>>> pprint(res)
{'a': 'A', 'b': 'B'}

	Parameters

	target – The list of dicts, or some other iterable of mappings.

The start state can be customized with the init keyword
argument, as well as the update operation, with the op keyword
argument. For more on those customizations, see the Merge
spec.

	
class glom.Merge(subspec=T, init=<type 'dict'>, op=None)

	By default, Merge turns an iterable of mappings into a single,
merged dict [https://docs.python.org/3/library/stdtypes.html#dict], leveraging the behavior of the
update() [https://docs.python.org/3/library/stdtypes.html#dict.update] method. The start state can be customized
with init, as well as the update operation, with op.

	Parameters

	
	subspec – The location of the iterable of mappings. Defaults to T.

	init (callable) – A type or callable which returns a base
instance into which all other values will be merged.

	op (callable) – A callable, which takes two arguments, and
performs a merge of the second into the first. Can also be
the string name of a method to fetch on the instance created
from init. Defaults to "update".

Note

Besides the differing defaults, the primary difference between
Merge and other Fold subtypes is that its
op argument is assumed to be a two-argument function which
has no return value and modifies the left parameter
in-place. Because the initial state is a new object created with
the init parameter, none of the target values are modified.

	
class glom.Sum(subspec=T, init=<type 'int'>)

	The Sum specifier type is used to aggregate integers and other
numericals using addition, much like the sum() [https://docs.python.org/3/library/functions.html#sum] builtin.

>>> glom(range(5), Sum())
10

Note that this specifier takes a callable init parameter like
its friends, so to change the start value, be sure to wrap it in a
callable:

>>> glom(range(5), Sum(init=lambda: 5.0))
15.0

To “sum” lists and other iterables, see the Flatten
spec. For other objects, see the Fold specifier type.

	
class glom.Fold(subspec, init, op=<built-in function iadd>)

	The Fold specifier type is glom’s building block for reducing
iterables in data, implementing the classic fold [https://en.wikipedia.org/wiki/Fold_(higher-order_function)]
from functional programming, similar to Python’s built-in
reduce().

	Parameters

	
	subspec – A spec representing the target to fold, which must be
an iterable, or otherwise registered to ‘iterate’ (with
register()).

	init (callable) – A function or type which will be invoked to
initialize the accumulator value.

	op (callable) – A function to call on the accumulator value and
every value, the result of which will become the new
accumulator value. Defaults to operator.iadd() [https://docs.python.org/3/library/operator.html#operator.iadd].

Usage is as follows:

>>> target = [set([1, 2]), set([3]), set([2, 4])]
>>> result = glom(target, Fold(T, init=frozenset, op=frozenset.union))
>>> result == frozenset([1, 2, 3, 4])
True

Note the required spec and init arguments. op is
optional, but here must be used because the set [https://docs.python.org/3/library/stdtypes.html#set] and
frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset] types do not work with addition.

While Fold is powerful, Flatten and
Sum are subtypes with more convenient defaults for
day-to-day use.

Exceptions

	
class glom.FoldError

	Error raised when Fold() is called on non-iterable
targets, and possibly other uses in the future.

Matching & Validation

New in version 20.7.0.

Sometimes you want to confirm that your target data matches your
code’s assumptions. With glom, you don’t need a separate validation
step, you can do these checks inline with your glom spec, using
Match and friends.

Contents

	Validation with Match

	Optional and required dict key matching

	M Expressions

	Boolean operators and matching

	String matching

	Exceptions

	Validation with Check

Validation with Match

For matching whole data structures, use a Match spec.

	
class glom.Match(spec, default=Sentinel('_MISSING'))

	glom’s Match specifier type enables a new mode of glom usage:
pattern matching. In particular, this mode has been designed for
nested data validation.

Pattern specs are evaluated as follows:

	Spec instances are always evaluated first

	Types match instances of that type

	Instances of dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple],
set [https://docs.python.org/3/library/stdtypes.html#set], and frozenset [https://docs.python.org/3/library/stdtypes.html#frozenset] are matched recursively

	Any other values are compared for equality to the target with
==

By itself, this allows to assert that structures match certain
patterns, and may be especially familiar to users of the schema [https://github.com/keleshev/schema]
library.

For example, let’s load some data:

>>> target = [
... {'id': 1, 'email': 'alice@example.com'},
... {'id': 2, 'email': 'bob@example.com'}]

A Match pattern can be used to ensure this data is in its expected form:

>>> spec = Match([{'id': int, 'email': str}])

This spec succinctly describes our data structure’s pattern
Specifically, a list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict] objects, each of
which has exactly two keys, 'id' and 'email', whose values are
an int [https://docs.python.org/3/library/functions.html#int] and str [https://docs.python.org/3/library/stdtypes.html#str], respectively. Now,
glom() will ensure our target matches our pattern
spec:

>>> result = glom(target, spec)
>>> assert result == \
... [{'id': 1, 'email': 'alice@example.com'}, {'id': 2, 'email': 'bob@example.com'}]

With a more complex Match spec, we can be more precise:

>>> spec = Match([{'id': And(M > 0, int), 'email': Regex('[^@]+@[^@]+')}])

And allows multiple conditions to be applied.
Regex evaluates the regular expression against the
target value under the 'email' key. In this case, we take a
simple approach: an email has exactly one @, with at least one
character before and after.

Finally, M is our stand-in for the current target
we’re matching against, allowing us to perform in-line comparisons
using Python’s native greater-than operator (as well as
others). We apply our Match pattern as before:

>>> assert glom(target, spec) == \
... [{'id': 1, 'email': 'alice@example.com'}, {'id': 2, 'email': 'bob@example.com'}]

And as usual, upon a successful match, we get the matched result.

Note

For Python 3.6+ where dictionaries are ordered, keys in the target
are matched against keys in the spec in their insertion order.

	Parameters

	
	spec – The glomspec representing the pattern to match data against.

	default – The default value to be returned if a match fails. If not
set, a match failure will raise a MatchError.

	
matches(target)

	A convenience method on a Match instance, returns
True if the target matches, False if not.

>>> Match(int).matches(-1.0)
False

	Parameters

	target – Target value or data structure to match against.

	
verify(target)

	A convenience function a Match instance which returns the
matched value when target matches, or raises a
MatchError when it does not.

	Parameters

	target – Target value or data structure to match against.

	Raises

	glom.MatchError

Optional and required dict key matching

Note that our four Match rules above imply that
object [https://docs.python.org/3/library/functions.html#object] is a match-anything pattern. Because
isinstance(val, object) is true for all values in Python,
object is a useful stopping case. For instance, if we wanted to
extend an example above to allow additional keys and values in the
user dict above we could add object [https://docs.python.org/3/library/functions.html#object] as a generic pass through:

>>> target = [{'id': 1, 'email': 'alice@example.com', 'extra': 'val'}]
>>> spec = Match([{'id': int, 'email': str, object: object}]))
>>> assert glom(target, spec) == \\
 ... [{'id': 1, 'email': 'alice@example.com', 'extra': 'val'}]
True

The fact that {object: object} will match any dictionary exposes
the subtlety in Match dictionary evaluation.

By default, value match keys are required, and other keys are
optional. For example, 'id' and 'email' above are required
because they are matched via ==. If either was not present, it
would raise class:~glom.MatchError. class:object however is matched
with func:isinstance(). Since it is not an value-match comparison,
it is not required.

This default behavior can be modified with Required
and Optional.

	
class glom.Optional(key, default=Sentinel('_MISSING'))

	Used as a dict [https://docs.python.org/3/library/stdtypes.html#dict] key in a Match() spec,
marks that a value match key which would otherwise be required is
optional and should not raise MatchError even if no
keys match.

For example:

>>> spec = Match({Optional("name"): str})
>>> glom({"name": "alice"}, spec)
{'name': 'alice'}
>>> glom({}, spec)
{}
>>> spec = Match({Optional("name", default=""): str})
>>> glom({}, spec)
{'name': ''}

	
class glom.Required(key)

	Used as a dict [https://docs.python.org/3/library/stdtypes.html#dict] key in Match() mode, marks
that a key which might otherwise not be required should raise
MatchError if the key in the target does not match.

For example:

>>> spec = Match({object: object})

This spec will match any dict, because object [https://docs.python.org/3/library/functions.html#object] is the base
type of every object:

>>> glom({}, spec)
{}

{} will also match because match mode does not require at
least one match by default. If we want to require that a key
matches, we can use Required:

>>> spec = Match({Required(object): object})
>>> glom({}, spec)
Traceback (most recent call last):
...
MatchError: error raised while processing.
 Target-spec trace, with error detail (most recent last):
 - Target: {}
 - Spec: Match({Required(object): <type 'object'>})
 - Spec: {Required(object): <type 'object'>}
MatchError: target missing expected keys Required(object)

Now our spec requires at least one key of any type. You can refine
the spec by putting more specific subpatterns inside of
Required.

M Expressions

The most concise way to express validation and guards.

	
glom.M = M

	M is similar to T, a stand-in for the
current target, but where T allows for attribute and
key access and method calls, M allows for comparison
operators.

If a comparison succeeds, the target is returned unchanged.
If a comparison fails, MatchError is thrown.

Some examples:

>>> glom(1, M > 0)
1
>>> glom(0, M == 0)
0
>>> glom('a', M != 'b') == 'a'
True

M by itself evaluates the current target for truthiness.
For example, M | Literal(None) is a simple idiom for normalizing all falsey values to None:

>>> from glom import Literal
>>> glom([0, False, "", None], [M | Literal(None)])
[None, None, None, None]

For convenience, & and | operators are overloaded to
construct And and Or instances.

>>> glom(1.0, (M > 0) & float)
1.0

Note

Python’s operator overloading may make for concise code,
but it has its limits.

Because bitwise operators (& and |) have higher precedence
than comparison operators (>, <, etc.), expressions must
be parenthesized.

>>> M > 0 & float
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for &: 'int' and 'type'

Similarly, because of special handling around ternary
comparisons (1 < M < 5) are implemented via
short-circuiting evaluation, they also cannot be captured by
M.

Boolean operators and matching

While M is an easy way to construct expressions, sometimes a more
object-oriented approach can be more suitable.

	
class glom.Or(*children, **kw)

	Tries to apply the first child spec to the target, and return the result.
If GlomError is raised, try the next child spec until there are no
all child specs have been tried, then raise MatchError.

	
class glom.And(*children, **kw)

	Applies child specs one after the other to the target; if none of the
specs raises GlomError, returns the last result.

	
class glom.Not(child)

	Inverts the child. Child spec will be expected to raise
GlomError (or subtype), in which case the target will be returned.

If the child spec does not raise GlomError, MatchError
will be raised.

String matching

	
class glom.Regex(pattern, flags=0, func=None)

	checks that target is a string which matches the passed regex pattern

raises MatchError if there isn’t a match; returns Target if match

variables captures in regex are added to the scope so they can
be used by downstream processes

Exceptions

	
class glom.MatchError(fmt, *args)

	Raised when a Match or M check fails.

>>> glom({123: 'a'}, Match({'id': int}))
Traceback (most recent call last):
...
MatchError: key 123 didn't match any of ['id']

	
class glom.TypeMatchError(actual, expected)

	MatchError subtype raised when a
Match fails a type check.

>>> glom({'id': 'a'}, Match({'id': int}))
Traceback (most recent call last):
...
TypeMatchError: error raised while processing.
 Target-spec trace, with error detail (most recent last):
 - Target: {'id': 'a'}
 - Spec: Match({'id': <type 'int'>})
 - Spec: {'id': <type 'int'>}
 - Target: 'a'
 - Spec: int
TypeMatchError: expected type int, not str

Validation with Check

Warning

Given the suite of tools introduced with Match, the
Check specifier type may be deprecated in a future
release.

	
class glom.Check(spec=T, **kwargs)

	Check objects are used to make assertions about the target data,
and either pass through the data or raise exceptions if there is a
problem.

If any check condition fails, a CheckError is raised.

	Parameters

	
	spec – a sub-spec to extract the data to which other assertions will
be checked (defaults to applying checks to the target itself)

	type – a type or sequence of types to be checked for exact match

	equal_to – a value to be checked for equality match (“==”)

	validate – a callable or list of callables, each representing a
check condition. If one or more return False or raise an
exception, the Check will fail.

	instance_of – a type or sequence of types to be checked with isinstance()

	one_of – an iterable of values, any of which can match the target (“in”)

	default – an optional default value to replace the value when the check fails
(if default is not specified, GlomCheckError will be raised)

Aside from spec, all arguments are keyword arguments. Each
argument, except for default, represent a check
condition. Multiple checks can be passed, and if all check
conditions are left unset, Check defaults to performing a basic
truthy check on the value.

	
class glom.CheckError(msgs, check, path)

	This GlomError subtype is raised when target data fails to
pass a Check’s specified validation.

An uncaught CheckError looks like this:

>>> target = {'a': {'b': 'c'}}
>>> glom(target, {'b': ('a.b', Check(type=int))})
Traceback (most recent call last):
...
CheckError: target at path ['a.b'] failed check, got error: "expected type to be 'int', found type 'str'"

If the Check contains more than one condition, there may be
more than one error message. The string rendition of the
CheckError will include all messages.

You can also catch the CheckError and programmatically access
messages through the msgs attribute on the CheckError
instance.

Exceptions & Debugging

While glom works well when all goes as intended, it even shines when
data doesn’t match expectations. glom’s error messages and exception
hierarchy have been designed to maximize readability and
debuggability. Read on for a listing of glom’s exceptions and how to
debug them.

Contents

	Exceptions

	Reading a glom Exception

	Debugging

Exceptions

glom introduces a several new exception types designed to maximize
readability and debuggability. Note that all these errors derive from
GlomError, and are only raised from glom() calls, not
from spec construction or glom type registration. Those declarative
and setup operations raise ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], TypeError [https://docs.python.org/3/library/exceptions.html#TypeError], and
other standard Python exceptions as appropriate.

Here is a short list of links to all public exception types in glom.

	
	GlomError

	PathAccessError

	PathAssignError

	PathDeleteError

	
	CoalesceError

	FoldError

	MatchError

	TypeMatchError

	
	CheckError

	UnregisteredTarget

	BadSpec

Reading a glom Exception

glom errors are regular Python exceptions, but may look a little
different from other Python errors. Because glom is a data
manipulation library, glom errors include a data traceback,
interleaving spec and target data.

For example, let’s raise an error by glomming up some data that doesn’t exist:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 >>> target = {'planets': [{'name': 'earth', 'moons': 1}]}
 >>> glom(target, ('planets', ['rings']))
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/mahmoud/projects/glom/glom/core.py", line 1787, in glom
 raise err
 glom.core.PathAccessError: error raised while processing, details below.
 Target-spec trace (most recent last):
 - Target: {'planets': [{'name': 'earth', 'moons': 1}]}
 - Spec: ('planets', ['rings'])
 - Spec: 'planets'
 - Target: [{'name': 'earth', 'moons': 1}]
 - Spec: ['rings']
 - Target: {'name': 'earth', 'moons': 1}
 - Spec: 'rings'
 glom.core.PathAccessError: could not access 'rings', part 0 of Path('rings'), got error: KeyError('rings')

Let’s step through this output:

	Line 1: We created a planet registry, similar to the one in the glom Tutorial.

	Line 2-3: We try to get a listing of rings of all the planets. Instead, we get a Python traceback.

	Line 7: We see we have a PathAccessError.

	Line 8-9: The “target-spec trace”, our data stack, begins. It always starts with the target data as it was passed in.

	Line 10: Next is the top-level spec, as passed in: ('planets', ['rings'])

	Line 11: glom takes the first part of the spec from line 9, 'planets', to get the next target.

	Line 12: Because the spec on line 11 updated the current target, glom outputs it. When a spec is evaluated but the target value is unchanged, the target is skipped in the trace.

	Line 14-15: We get to the last two lines, which include the culprit target and spec

	Line 16: Finally, our familiar PathAccessError message,
with more details about the error, including the original KeyError('rings').

This view of glom evaluation answers many of the questions
a developer or user would ask upon encountering the error:

	What was the data?

	Which part of the spec failed?

	What was the original error?

The data trace does this by peeling away at the target and spec until
it hones in on the failure. Both targets and specs in traces are
truncated to terminal width to maximize readability.

Note

If for some reason you need the full Python stack instead of the
glom data traceback, pass glom_debug=True to the top-level glom
call.

Debugging

Good error messages are great when the data has a problem, but what
about when a spec is incorrect?

Even the most carefully-constructed specifications eventually need
debugging. If the error message isn’t enough to fix your glom issues,
that’s where Inspect comes in.

	
class glom.Inspect(*a, **kw)

	The Inspect specifier type provides a way to get
visibility into glom’s evaluation of a specification, enabling
debugging of those tricky problems that may arise with unexpected
data.

Inspect can be inserted into an existing spec in one of two
ways. First, as a wrapper around the spec in question, or second,
as an argument-less placeholder wherever a spec could be.

Inspect supports several modes, controlled by
keyword arguments. Its default, no-argument mode, simply echos the
state of the glom at the point where it appears:

>>> target = {'a': {'b': {}}}
>>> val = glom(target, Inspect('a.b')) # wrapping a spec

path: ['a.b']
target: {'a': {'b': {}}}
output: {}

Debugging behavior aside, Inspect has no effect on
values in the target, spec, or result.

	Parameters

	
	echo (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to print the path, target, and output of
each inspected glom. Defaults to True.

	recursive (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the Inspect should be applied
at every level, at or below the spec that it wraps. Defaults
to False.

	breakpoint (bool [https://docs.python.org/3/library/functions.html#bool]) – This flag controls whether a debugging prompt
should appear before evaluating each inspected spec. Can also
take a callable. Defaults to False.

	post_mortem (bool [https://docs.python.org/3/library/functions.html#bool]) – This flag controls whether exceptions
should be caught and interactively debugged with pdb [https://docs.python.org/3/library/pdb.html#module-pdb] on
inspected specs.

All arguments above are keyword-only to avoid overlap with a
wrapped spec.

Note

Just like pdb.set_trace(), be careful about leaving stray
Inspect() instances in production glom specs.

Writing a custom Specifier Type

While glom comes with a lot of built-in features, no library can ever
encompass all data manipulation operations.

To cover every case out there, glom provides a way to extend its
functionality with your own data handling hooks. This document
explains glom’s execution model and how to integrate with it when
writing a custom Specifier Type.

When to write a Specifier Type

glom has always supported arbitrary callables, like so:

glom({'nums': range(5)}, ('nums', sum))
10

With this built-in extensibility, what does a glom specifier type add?

Custom specifier types are useful when you want to:

	Perform validation at spec construction time

	Enable users to interact with new target types and operations

	Improve readability and reusability of your data transformations

	Temporarily change the glom runtime behavior

If you’re just building a one-off spec for transforming your own data,
there’s no reason to reach for an extension. glom’s extension API
is easy, but a good old Python lambda is even easier.

Building your Specifier Type

Any object instance with a glomit method can participate in a glom
call. By way of example, here is a programming cliché implemented as a
glom specifier type, with comments referencing notes below.

class HelloWorldSpec(object): # 1
 def glomit(self, target, scope): # 2
 print("Hello, world!")
 return target

And now let’s put it to use!

from glom import glom

target = {'example': 'object'}

glom(target, HelloWorldSpec()) # 3
prints "Hello, world!" and returns target

There are a few things to note from this example:

	Specifier types do not need to inherit from any type. Just
implement the glomit method.

	The glomit signature takes two parameters, target and
scope. The target should be familiar from using
glom(), and it’s the scope that makes glom really
tick.

	By convention, instances are used in specs passed to
glom() calls, not the types themselves.

The glom Scope

The glom scope exposes runtime state to the specifier type. Let’s take a look inside a scope:

from glom import glom
from pprint import pprint

class ScopeInspectorSpec(object):
 def glomit(self, target, scope):
 pprint(dict(scope))
 return target

glom(target, ScopeInspectorSpec())

Which gives us:

{T: {'example': 'object'},
<function glom at 0x7f208984d140>: <function _glom at 0x7f208984d5f0>,
<class 'glom.core.Path'>: [],
<class 'glom.core.Spec'>: <__main__.ScopeInspectorSpec object at 0x7f208bf58690>,
<class 'glom.core.Inspect'>: None,
<class 'glom.core.TargetRegistry'>: <glom.core.TargetRegistry object at 0x7f208984b4d0>}

As you can see, all glom’s core workings are present, all under familiar keys:

	The current target, accessible using T as a scope key.

	The current spec, accessible under Spec.

	The current path, accessible under Path.

	The TargetRegistry, used to register new operations and target types.

	Even the glom() function itself, filed under glom().

To learn how to use the scope’s powerful features idiomatically, let’s
reimplement at one of glom’s standard specifier types.

Specifiers by example

While we’ve technically created a couple of extensions above, let’s
really dig into the features of the scope using an example.

Sum is a standard extension that ships with glom, and
it works like this:

from glom import glom, Sum

glom([1, 2, 3], Sum())
6

The version below does not have as much error handling, but reproduces
all the same basic principles. This version of Sum() code also
contains comments with references to explanatory notes below.

from glom import glom, Path, T
from glom.core import TargetRegistry, UnregisteredTarget # 1

class Sum(object):
 def __init__(self, subspec=T, init=int): # 2
 self.subspec = subspec
 self.init = init

 def glomit(self, target, scope):
 if self.subspec is not T:
 target = scope[glom](target, self.subspec, scope) # 3

 try:
 # 4
 iterate = scope[TargetRegistry].get_handler('iterate', target, path=scope[Path])
 except UnregisteredTarget as ut:
 # 5
 raise TypeError('can only %s on iterable targets, not %s type (%s)'
 % (self.__class__.__name__, type(target).__name__, ut))

 try:
 iterator = iterate(target)
 except Exception as e:
 raise TypeError('failed to iterate on instance of type %r at %r (got %r)'
 % (target.__class__.__name__, Path(*scope[Path]), e))

 return self._sum(iterator)

 def _sum(self, iterator): # 6
 ret = self.init()

 for v in iterator:
 ret += v

 return ret

Now, let’s take a look at the interesting parts, referencing the comments above:

	Specifier types often reference the TargetRegistry, which is not part
of the top-level glom API, and must be imported from
glom.core. More on this in #4.

	Specifier type __init__ methods may take as many or as few
arguments as desired, but many glom specifier types take a first
parameter of a subspec, meant to be fetched right before the
actual specifier’s operation. This helps readability of
glomspecs. See Coalesce for an example of this
idiom.

	Specifier types should not reference the
glom() function directly, instead use the
glom() function as a key to the scope map to get the
currently active glom(). This ensures that the extension type is
compatible with advanced specifier types which override the
glom() function.

	To maximize compatiblity with new target types, glom allows
new types and operations to be registered with the TargetRegistry. Specifier types
should respect this by contextually fetching these standard
operators as demonstrated above. At the time of writing, three
primary operators are used by glom itself, "get",
"iterate", and "assign".

	In the event that the current target does not support your
Specifier type’s desired operation, it’s customary to raise a helpful
error. Consider creating your own exception type and inheriting
from GlomError.

	Specifier types may have other methods and members in addition to
the primary glomit() method. This _sum() method
implements most of the core of our custom specifier type.

Check out the implementation of the real glom.Sum() specifier for more details.

Summing up

glom Specifier Types are more than just add-ons; the extension
architecture is how most of glom itself is implemented. Build
knowing that the paradigm is as powerful as anything built-in.

If you need more examples, another simple one can be found in
this snippet. glom’s source code itself
contains many specifiers more advanced than the above. Simply search
the codebase for glomit() methods and you will find no shortage.

Happy extending!

glom Modes

Note

Be sure to read “Writing a custom Specifier Type” before diving into the
deep details below.

A glom “mode” determines how Python built-in data structures are
evaluated. Think of it like a dialect for how dict [https://docs.python.org/3/library/stdtypes.html#dict],
tuple [https://docs.python.org/3/library/stdtypes.html#tuple], list [https://docs.python.org/3/library/stdtypes.html#list], etc., are interpreted in a spec. Modes
do not change the behavior of T, or many other core
specifiers. Modes are one of the keys to keeping glom specs short and
readable.

A mode is used similar to a spec: whatever Python data structure is
passed to the mode type constructor will be evaluated under that
mode. Once set, the mode remains in place until it is overridden by
another mode.

glom only has a few modes:

	Auto - The default glom behavior, used for data
transformation, with the spec acting as a template.

	Fill - A variant of the default transformation
behavior; preferring to “fill” containers instead of
iterating, chaining, etc.

	Match - Treats the spec as a pattern, checking
that the target matches.

Adding a new mode is relatively rare, but when it comes up this
document includes relevant details.

Writing custom Modes

A mode is a spec which sets scope[MODE] to a function which
accepts target, spec, and scope and returns a result, a
signature very similar to the top-level glom() method
itself.

For example, here is an abbreviated version of the Fill
mode:

class Fill(object):
 def __init__(self, spec):
 self.spec = spec

 def glomit(self, target, scope):
 scope[MODE] = _fill
 return scope[glom](target, self.spec, scope)

def _fill(target, spec, scope):
 recurse = lambda val: scope[glom](target, val, scope)
 if type(spec) is dict:
 return {recurse(key): recurse(val)
 for key, val in spec.items()}
 if type(spec) in (list, tuple, set, frozenset):
 result = [recurse(val) for val in spec]
 if type(spec) is list:
 return result
 return type(spec)(result)
 if callable(spec):
 return spec(target)
 return spec

Like any other Specifier Type, Fill has
a glomit() method, and this method sets the MODE key in the
glom scope to our _fill function. The name
itself doesn’t matter, but the signature must match exactly:
(target, spec, scope).

As mentioned above, custom modes are relatively rare for glom. If you
write one, let us know [https://github.com/mahmoud/glom/issues]!

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 glom	

 	
 	
 glom.core	

 	
 	
 glom.matching	

 	
 	
 glom.mutation	

 	
 	
 glom.streaming	

 	
 	
 glom.tutorial	

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	all() (glom.Iter method)

 	And (class in glom)

 	
 	Assign (class in glom)

 	assign() (in module glom)

C

 	
 	Call (class in glom)

 	Check (class in glom)

 	CheckError (class in glom)

 	
 	chunked() (glom.Iter method)

 	Coalesce (class in glom)

 	CoalesceError (class in glom)

 	constants() (glom.Invoke method)

D

 	
 	Delete (class in glom)

 	
 	delete() (in module glom)

 	dropwhile() (glom.Iter method)

F

 	
 	filter() (glom.Iter method)

 	first() (glom.Iter method)

 	Flatten (class in glom)

 	
 	flatten() (glom.Iter method)

 	(in module glom)

 	Fold (class in glom)

 	FoldError (class in glom)

G

 	
 	glom() (in module glom)

 	glom.core (module)

 	glom.matching (module)

 	glom.mutation (module)

 	
 	glom.streaming (module)

 	glom.tutorial (module)

 	GlomError (class in glom)

 	Glommer (class in glom)

I

 	
 	Inspect (class in glom)

 	
 	Invoke (class in glom)

 	Iter (class in glom)

L

 	
 	limit() (glom.Iter method)

 	
 	Literal (class in glom)

M

 	
 	M (in module glom)

 	map() (glom.Iter method)

 	Match (class in glom)

 	
 	MatchError (class in glom)

 	matches() (glom.Match method)

 	Merge (class in glom)

 	merge() (in module glom)

N

 	
 	Not (class in glom)

O

 	
 	Optional (class in glom)

 	
 	Or (class in glom)

P

 	
 	Path (class in glom)

 	PathAccessError (class in glom)

 	
 	PathAssignError (class in glom)

 	PathDeleteError (class in glom)

R

 	
 	Ref (class in glom)

 	Regex (class in glom)

 	
 	register() (in module glom)

 	Required (class in glom)

S

 	
 	SKIP (in module glom)

 	slice() (glom.Iter method)

 	Spec (class in glom)

 	specfunc() (glom.Invoke class method)

 	
 	specs() (glom.Invoke method)

 	split() (glom.Iter method)

 	star() (glom.Invoke method)

 	STOP (in module glom)

 	Sum (class in glom)

T

 	
 	T (in module glom)

 	
 	takewhile() (glom.Iter method)

 	TypeMatchError (class in glom)

U

 	
 	unique() (glom.Iter method)

 	
 	UnregisteredTarget (class in glom)

V

 	
 	verify() (glom.Match method)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 glom

 		
 glom Tutorial

 		
 Dealing with Data

 		
 Accessing Nested Data

 		
 Interactive Deep Get

 		
 Going Beyond Access

 		
 Handling Nested Lists

 		
 Changing Requirements

 		
 Data-Driven Assignment

 		
 True Python Native

 		
 Interactive Planetary Templating

 		
 Practical Production Use

 		
 Understanding the Specification

 		
 Interactive Contact Management

 		
 Conclusion

 		
 Frequently Asked Questions

 		
 What does “glom” mean?

 		
 Any other glom terminology worth knowing?

 		
 Other glom tips?

 		
 Why not just write more Python?

 		
 How does glom work?

 		
 Does Python need a null-coalescing operator?

 		
 glom by Analogy

 		
 Similarity to list comprehensions

 		
 Similarity to templating (Jinja, Django, Mustache)

 		
 Similarity to SQL and GraphQL

 		
 Similiarity to validation (jsonschema, schema, cerberus)

 		
 Similarity to jq

 		
 Similarity to XPath/XSLT

 		
 Others

 		
 Examples & Snippets

 		
 Reversing a Target

 		
 Iteration Result as Tuple

 		
 Data-Driven Assignment

 		
 Construct Instance

 		
 Filtered Iteration

 		
 Preserve Type

 		
 Automatic Django ORM type handling

 		
 Filter Iterable

 		
 Lisp-style If Extension

 		
 Parellel Evaluation of Sub-Specs

 		
 Clamp Values

 		
 Transform Tree

 		
 Fix Up Strings in Parsed JSON

 		
 glom Command-Line Interface

 		
 Core glom API

 		
 The glom Function

 		
 Basic Specifiers

 		
 Object-Oriented Access and Method Calls with T

 		
 Defaults with Coalesce

 		
 Calling Callables with Invoke

 		
 Alternative approach to functions: Call

 		
 Self-Referential Specs

 		
 Core Exceptions

 		
 Setup and Registration

 		
 Assignment & Mutation

 		
 Assignment

 		
 Deletion

 		
 Exceptions

 		
 Streaming & Iteration

 		
 Reduction & Grouping

 		
 Combining iterables with Flatten and Merge

 		
 Exceptions

 		
 Matching & Validation

 		
 Validation with Match

 		
 Optional and required dict key matching

 		
 M Expressions

 		
 Boolean operators and matching

 		
 String matching

 		
 Exceptions

 		
 Validation with Check

 		
 Exceptions & Debugging

 		
 Exceptions

 		
 Reading a glom Exception

 		
 Debugging

 		
 Writing a custom Specifier Type

 		
 When to write a Specifier Type

 		
 Building your Specifier Type

 		
 The glom Scope

 		
 Specifiers by example

 		
 Summing up

 		
 glom Modes

 		
 Writing custom Modes

_static/comment-bright.png

_static/comment-close.png

_static/comet.png

_static/comet_multi.png
O\

A
/@ AN

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

