
glom Documentation
Release 20.5.0

Mahmoud Hashemi

Jul 08, 2020

Learning glom

1 Installation 3

Python Module Index 53

Index 55

i

ii

glom Documentation, Release 20.5.0

Restructuring data, the Python way.

glom is a new approach to working with data in Python, featuring:

• Path-based access for nested structures

• Declarative data transformation using lightweight, Pythonic specifications

• Readable, meaningful error messages

• Built-in debugging features

• Plus, deep assignment, streaming, data validation, and more!

While it may sound like a lot, glom’s straightforward approach becomes second-nature very quickly. Get started with
a few minutes on the tutorial!

Learning glom 1

https://pypi.org/project/glom/
https://calver.org
https://github.com/mahmoud/glom/blob/master/CHANGELOG.md

glom Documentation, Release 20.5.0

2 Learning glom

CHAPTER 1

Installation

glom is pure Python, and tested on Python 2.7-3.7, as well as PyPy. Installation is easy:

pip install glom

Then you’re ready to get glomming!

from glom import glom

target = {'a': {'b': {'c': 'd'}}}
glom(target, 'a.b.c') # returns 'd'

There’s much, much more to glom, check out the glom Tutorial and API reference!

Just glom it!

1.1 glom Tutorial

Learn to use glom in no time!

Basic use of glom requires only a glance, not a whole tutorial. The case studies below takes a wider look at day-to-day
data and object manipulation, helping you develop an eye for writing robust, declarative data transformations.

Go beyond basic with 10 minutes or less, and even further if you can spare a half hour.

Contents

• Dealing with Data

• Accessing Nested Data

– Interactive Deep Get

• Going Beyond Access

3

glom Documentation, Release 20.5.0

• Handling Nested Lists

• Changing Requirements

• Data-Driven Assignment

• True Python Native

– Interactive Planetary Templating

• Practical Production Use

• Understanding the Specification

– Interactive Contact Management

• Conclusion

Note: glom’s tutorial is a runnable module, feel free to run pip install glom and from glom.tutorial
import * in the Python REPL to glom along. Or try it in your browser here or in the embedded REPLs below!

1.1.1 Dealing with Data

Every application deals with data, and these days, even the simplest applications deals with rich, heavily-nested data.

What does nested data looks like? In its most basic form:

>>> data = {'a': {'b': {'c': 'd'}}}
>>> data['a']['b']['c']
'd'

Pretty simple right? On a good day, it certainly can be. But other days, a value might not be set:

>>> data2 = {
... 'a': {
... 'b': None
... }
... }
>>> data2['a']['b']['c']
Traceback (most recent call last):
...
TypeError: 'NoneType' object is not subscriptable

Well that’s no good. We didn’t get our value. We got a TypeError, a type of error that doesn’t help us at all. The error
message doesn’t even tell us which access failed. If data2 had been passed to us, we wouldn’t know if 'a', 'b', or
'c' had been set to None.

If only there were a more semantically powerful accessor.

1.1.2 Accessing Nested Data

AKA “Access Granted”

After years of research and countless iterations, the glom team landed on this simple construct:

>>> glom(data, 'a.b.c')
'd'

4 Chapter 1. Installation

https://repl.it/@mhashemi/glom-planetary-templating

glom Documentation, Release 20.5.0

Well that’s short, and reads fine, but what about in the error case?

>>> glom(data2, 'a.b.c')
Traceback (most recent call last):
...
PathAccessError: could not access 'c', index 2 in path Path('a', 'b', 'c'), got
→˓error: ...

That’s more like it! We have a function that can give us our data, or give us an error message we can read, understand,
and act upon.

See also:

For more on glom’s error messages, see Exceptions & Debugging.

Interactive Deep Get

And would you believe this “deep access” example doesn’t even scratch the surface of the tip of the iceberg? Welcome
to glom.

1.1.3 Going Beyond Access

To start out, let’s introduce some basic terminology:

• target is our data, be it a dict, list, or any other object

• spec is what we want output to be

With output = glom(target, spec) committed to memory, we’re ready for some new requirements.

Let’s follow some astronomers on their journey exploring the solar system.

>>> target = {
... 'galaxy': {
... 'system': {
... 'planet': 'jupiter'
... }
... }
... }
>>> spec = 'galaxy.system.planet'
>>> glom(target, spec)
'jupiter'

Our astronomers want to focus in on the Solar system, and represent planets as a list. Let’s restructure the data to make
a list of names:

>>> target = {
... 'system': {
... 'planets': [
... {'name': 'earth'},
... {'name': 'jupiter'}
...]
... }
... }
>>> glom(target, ('system.planets', ['name']))
['earth', 'jupiter']

And let’s say we want to capture a parallel list of moon counts with the names as well:

1.1. glom Tutorial 5

glom Documentation, Release 20.5.0

>>> target = {
... 'system': {
... 'planets': [
... {'name': 'earth', 'moons': 1},
... {'name': 'jupiter', 'moons': 69}
...]
... }
... }
>>> spec = {
... 'names': ('system.planets', ['name']),
... 'moons': ('system.planets', ['moons'])
... }
>>> pprint(glom(target, spec))
{'moons': [1, 69], 'names': ['earth', 'jupiter']}

We can react to changing data requirements as fast as the data itself can change, naturally restructuring our results,
despite the input’s nested nature. Like a list comprehension, but for nested data, our code mirrors our output.

1.1.4 Handling Nested Lists

In the example above we introduced a new wrinkle: the target for planets has multiple entries stored in a list.
Previously our targets were all nested dictionaries.

To handle this we use a new spec pattern: (path, [subpath]). In this pattern path is the path to the list, and
subpath is the path within each element of the list. What’s that? You need to handle lists within lists (within lists
. . .)? Then just repeat the pattern, replacing subpath with another (path, [subpath]) tuple. For example, say
we have information about each planet’s moons like so:

>>> target = {
... 'system': {
... 'planets': [
... {
... 'name': 'earth',
... 'moons': [
... {'name': 'luna'}
...]
... },
... {
... 'name': 'jupiter',
... 'moons': [
... {'name': 'io'},
... {'name': 'europa'}
...]
... }
...]
... }
... }

We can get the names of each moon from our nested lists by nesting our subpath specs:

>>> spec = {
... 'planet_names': ('system.planets', ['name']),
... 'moon_names': ('system.planets', [('moons', ['name'])])
... }
>>> pprint(glom(target, spec))
{'moon_names': [['luna'], ['io', 'europa']], 'planet_names': ['earth', 'jupiter']}

6 Chapter 1. Installation

glom Documentation, Release 20.5.0

1.1.5 Changing Requirements

Unfortunately, data in the real world is messy. You might be expecting a certain format and end up getting something
completely different. No worries, glom to the rescue.

Coalesce is a glom construct that allows you to specify fallback behavior for a list of subspecs. Subspecs are passed
as positional arguments, while defaults can be set using keyword arguments.

Let’s say our astronomers recently got a new update in their systems, and sometimes system will contain
dwarf_planets instead of planets.

To handle this, we can define the dwarf_planets subspec as a Coalesce fallback.

>>> from glom import Coalesce
>>> target = {
... 'system': {
... 'planets': [
... {'name': 'earth', 'moons': 1},
... {'name': 'jupiter', 'moons': 69}
...]
... }
... }
>>> spec = {
... 'planets': (Coalesce('system.planets', 'system.dwarf_planets'), ['name']),
... 'moons': (Coalesce('system.planets', 'system.dwarf_planets'), ['moons'])
... }
>>> pprint(glom(target, spec))
{'moons': [1, 69], 'planets': ['earth', 'jupiter']}

You can see here we get the expected results, but say our target changes. . .

>>> target = {
... 'system': {
... 'dwarf_planets': [
... {'name': 'pluto', 'moons': 5},
... {'name': 'ceres', 'moons': 0}
...]
... }
... }
>>> pprint(glom(target, spec))
{'moons': [5, 0], 'planets': ['pluto', 'ceres']}

Voila, the target can still be parsed and we can elegantly handle changes in our data formats.

1.1.6 Data-Driven Assignment

Quite often APIs deliver data in dictionaries without constant key values. They use parts of the data itself as a key.
This we call data-driven assignment.

The following example shows you a way to handle this situation. It extracts the moon count from a dictionary that has
the planet names as a key.

>>> from glom import glom, T, Merge, Iter, Coalesce
>>> target = {
... "pluto": {"moons": 6, "population": None},
... "venus": {"population": {"aliens": 5}},
... "earth": {"moons": 1, "population": {"humans": 7700000000, "aliens": 1}},

(continues on next page)

1.1. glom Tutorial 7

glom Documentation, Release 20.5.0

(continued from previous page)

... }
>>> spec = {
... "moons": (
... T.items(),
... Iter({T[0]: (T[1], Coalesce("moons", default=0))}),
... Merge(),
...)
... }
>>> pprint(glom(target, spec))
{'moons': {'earth': 1, 'pluto': 6, 'venus': 0}}

Don’t worry if you do not fully understand how this works at this point. If you would like to learn more, look up
Iter(), T, or Merge in the glom API reference.

1.1.7 True Python Native

Most other implementations are limited to a particular data format or pure model, be it jmespath or XPath/XSLT. glom
makes no such sacrifices of practicality, harnessing the full power of Python itself.

Going back to our example, let’s say we wanted to get an aggregate moon count:

>>> target = {
... 'system': {
... 'planets': [
... {'name': 'earth', 'moons': 1},
... {'name': 'jupiter', 'moons': 69}
...]
... }
... }
>>> pprint(glom(target, {'moon_count': ('system.planets', ['moons'], sum)}))
{'moon_count': 70}

With glom, you have full access to Python at any given moment. Pass values to functions, whether built-in, imported,
or defined inline with lambda.

Interactive Planetary Templating

1.1.8 Practical Production Use

AKA “Point of Contact”

glom is a practical tool for production use. To best demonstrate how you can use it, we’ll be building an API response.
We’re implementing a Contacts web service, like an address book, but backed by an ORM/database and compatible
with web and mobile frontends.

Let’s create a Contact to familiarize ourselves with our test data: pri

>>> from glom.tutorial import * # import the tutorial module members
>>> contact = Contact('Julian',
... emails=[Email(email='jlahey@svtp.info')],
... location='Canada')
>>> contact.save()
>>> contact.primary_email
Email(id=5, email='jlahey@svtp.info', email_type='personal')

(continues on next page)

8 Chapter 1. Installation

glom Documentation, Release 20.5.0

(continued from previous page)

>>> contact.add_date
datetime.datetime(...)
>>> contact.id
5

As you can see, the Contact object has fields for primary_email, defaulting to the first email in the email list, and
add_date, to track the date the contact was added. And as the unique, autoincrementing id suggests, there appear
to be a few other contacts already in our system.

>>> len(Contact.objects.all())
5

Sure enough, we’ve got a little address book going here. But right now it consists of plain Python objects, not very
API friendly:

>>> json.dumps(Contact.objects.all())
Traceback (most recent call last):
...
TypeError: Contact(id=1, name='Kurt', ...) ... is not JSON serializable

But at least we know our data, so let’s get to building the API response with glom.

First, let’s set our source object, conventionally named target:

>>> target = Contact.objects.all() # here we could do filtering, etc.

Next, let’s specify the format of our result. Remember, the processing is not happening here, this is just declaring the
format. We’ll be going over the specifics of what each line does after we get our results.

>>> spec = {'results': [{'id': 'id',
... 'name': 'name',
... 'add_date': ('add_date', str),
... 'emails': ('emails', [{'id': 'id',
... 'email': 'email',
... 'type': 'email_type'}]),
... 'primary_email': Coalesce('primary_email.email',
→˓default=None),
... 'pref_name': Coalesce('pref_name', 'name', skip='', default='
→˓'),
... 'detail': Coalesce('company',
... 'location',
... ('add_date.year', str),
... skip='', default='')}]}

With target and spec in hand, we’re ready to glom, build our response, and take a look the final json-serialized form:

>>> resp = glom(target, spec)
>>> print(json.dumps(resp, indent=2, sort_keys=True))
{

"results": [
{

"add_date": "20...",
"detail": "Mountain View",
"emails": [

{
"email": "kurt@example.com",

(continues on next page)

1.1. glom Tutorial 9

glom Documentation, Release 20.5.0

(continued from previous page)

"id": 1,
"type": "personal"

}
],
"id": 1,
"name": "Kurt",
"pref_name": "Kurt",
"primary_email": "kurt@example.com"

},
...
}

As we can see, our response looks a lot like our glom specification. This type of WYSIWYG code is one of glom’s
most important features. After we’ve appreciated that simple fact, let’s look at it line by line.

1.1.9 Understanding the Specification

For id and name, we’re just doing simple copy-overs. For add_date, we use a tuple to denote repeated gloms; we
access add_date and pass the result to str to convert it to a string.

For emails we need to serialize a list of subobjects. Good news, glom subgloms just fine, too. We use a tuple to
access emails, iterate over that list, and from each we copy over id and email. Note how email_type is easily
remapped to simply type.

For primary_email we see our first usage of glom’s Coalesce feature. Much like SQL’s keyword of the same
name, Coalesce returns the result of the first spec that returns a valid value. In our case, primary_email can
be None, so a further access of primary_email.email would, outside of glom, result in an AttributeError or
TypeError like the one we described before the Contact example. Inside of a glom Coalesce, exceptions are caught
and we move on to the next spec. glom raises a CoalesceError when no specs match, so we use default to tell
it to return None instead.

Some Contacts have nicknames or other names they prefer to go by, so for pref_name, we want to return the stored
pref_name, or fall back to the normal name. Again, we use Coalesce, but this time we tell it not only to ignore
the default GlomError exceptions, but also ignore empty string values, and finally default to empty string if all specs
result in empty strings or GlomError.

And finally, for our last field, detail, we want to conjure up a bit of info that’ll help jog the user’s memory. We’re
going to include the location, or company, or year the contact was added. You can see an example of this feature as
implemented by GitHub, here: https://github.com/mahmoud/glom/stargazers

Interactive Contact Management

1.1.10 Conclusion

We’ve seen a crash course in how glom can tame your data and act as a powerful source of code coherency. glom
transforms not only your data, but also your code, bringing it in line with the data itself.

glom tamed our nested data, avoiding tedious, bug-prone lines, replacing what would have been large sections with
code that was declarative, but flexible, an ideal balance for maintainability.

1.2 Frequently Asked Questions

Paradigm shifts always raise a question or two.

10 Chapter 1. Installation

https://github.com/mahmoud/glom/stargazers

glom Documentation, Release 20.5.0

Contents

• What does “glom” mean?

• Any other glom terminology worth knowing?

• Other glom tips?

• Why not just write more Python?

• How does glom work?

• Does Python need a null-coalescing operator?

1.2.1 What does “glom” mean?

“glom” is short for “conglomerate”, which means “gather into a compact form”, coming from the Latin “glom-”
meaning ball, like globe.

glom can be used as a noun or verb. A developer might say, “I glommed together this API response.” An astronomer
might say, “these gloms of space dust are forming planets and comets.”

Got some data you need to transform? glom it!

1.2.2 Any other glom terminology worth knowing?

A couple of conventional terms that help navigate around glom’s semantics:

• target - glom operates on a variety of inputs, so we simply refer to the object being accessed (i.e., the first
argument to glom()) as the “target”

• spec - (aka “glomspec”) The accompanying template used to specify the structure and sources of the output.

• output - The value retrieved or created and returned by glom().

All of these can be seen in the conventional call to glom():

output = glom(target, spec)

Nothing too wild, but these standard terms really do help clarify the complex situations glom was built to handle.

1.2.3 Other glom tips?

Just a few (for now):

• Specs don’t have to live in the glom call. You can put them anywhere. Commonly-used specs work as class
attributes and globals.

• Using glom’s declarative approach does wonders for code coverage, much like attrs and schema, both of which
go great with glom.

• Advanced tips

– glom is designed to support all of Python’s built-ins as targets, and is readily extensible to other types
and special handling, through register().

– If you’re trying to minimize global state, consider instantiating your own Glommer object to encap-
sulate any type registration changes.

1.2. Frequently Asked Questions 11

https://github.com/python-attrs/attrs
https://github.com/keleshev/schema

glom Documentation, Release 20.5.0

If you’ve got more tips or patterns, send them our way!

1.2.4 Why not just write more Python?

The answer is more than just DRY (“Don’t Repeat Yourself”).

Here on the glom team, we’re big fans of Python. Have been for years. In fact, Python is one of a tiny handful of
languages that could support something as powerful as glom.

But not all Python code is the same. We built glom to replace the kind of Python that is about as un-Pythonic as code
gets: simultaneously fluffy, but also fragile. Simple transformations requiring countless lines.

Before glom, the “right” way to write this transformation code was verbose. Whether trying to fetch values nested
within objects that may contain attributes set to None, or performing a list comprehension which may raise an ex-
ception, the correct code was many lines of repetitious try-except blocks with a lot of hand-written exception
messages.

Written any more compactly, this Python would produce failures expressed in errors too low-level to associate with
the higher-level transformation.

So the glom-less code was hard to change, hard to debug, or both. glom specifications are none of the above, thanks
to meaningful, high-level error messages, a a built-in debugging facility , and a compact, composable
design.

In short, thanks to Python, glom can provide a Pythonic solution for those times when pure Python wasn’t Pythonic
enough.

1.2.5 How does glom work?

The core conceptual engine of glom is a very simple recursive loop. It could fit on a business card. OK maybe a
postcard.

In fact, here it is, in literate form, modified from this early point in glom history:

def glom(target, spec):

if the spec is a string or a Path, perform a deep-get on the target
if isinstance(spec, (basestring, Path)):

return _get_path(target, spec)

if the spec is callable, call it on the target
elif callable(spec):

return spec(target)

if the spec is a dict, assign the result of
the glom on the right to the field key on the left
elif isinstance(spec, dict):

ret = {}
for field, subspec in spec.items():

ret[field] = glom(target, subspec)
return ret

if the spec is a list, run the spec inside the list on every
element in the list and return the new list
elif isinstance(spec, list):

subspec = spec[0]
iterator = _get_iterator(target)

(continues on next page)

12 Chapter 1. Installation

https://github.com/mahmoud/glom/issues
https://github.com/mahmoud/glom/blob/186757b47af3d33901df4bf715874b5f3c781d8f/glom/__init__.py#L74-L91

glom Documentation, Release 20.5.0

(continued from previous page)

return [glom(t, subspec) for t in iterator]

if the spec is a tuple of specs, chain the specs by running the
first spec on the target, then running the second spec on the
result of the first, and so on.
elif isinstance(spec, tuple):

res = target
for subspec in spec:

res = glom(res, subspec)
return res

else:
raise TypeError('expected one of the above types')

1.2.6 Does Python need a null-coalescing operator?

Not technically a glom question, but it is frequently asked!

Null coalescing operators traverse nested objects and return null (or None for us) on the first null or non-traversable
object, depending on implementation.

It’s basically a compact way of doing a deep getattr() with a default set to None.

Suffice to say that glom(target, T.a.b.c, default=None) achieves this with ease, but I still want to
revisit the question, since it’s part of what got me thinking about glom in the first place.

First off, working in PayPal’s SOA environment, my team dealt with literally tens of thousands of service objects, with
object definitions (from other teams) nested so deep as to make an 80-character line length laughable.

But null coalescing wouldn’t have helped, because in most of those cases None wasn’t what we needed. We needed
a good, automatically generated error message when a deeply-nested field wasn’t accessible. Not NoneType has
no attribute 'x', but not plain old None either.

To solve this, I wrote my share of deep-gets before glom, including the open-source boltons.iterutils.get_path().
For whatever reason, it took me years of usage to realize just how often the deep-gets were coupled with the other
transformations that glom enables. Now, I can never go back to a simple deep-get.

Another years-in-the-making observation, from my time doing JavaScript then PHP then Django templates: all were
much more lax on typing than Python. Not because of a fierce belief in weak types, though. More because when you’re
templating, it’s inherently safer to return a blank value on lookup failures. You’re so close to text formats that this
default achieves a pretty desirable result. While implicitly doing this isn’t my cup of tea, and glom opts for explicit
Coalesce specifiers, this connection contributed to the concept of glom as an “object templating” system.

1.3 glom by Analogy

glom is pure Python, and you don’t need to know anything but Python to use it effectively.

Still, most everyone who encounters glom for the first time finds analogies to tools they already know. Whether SQL,
list comprehensions, or HTML templates, there seems to be no end to the similarities. Many of them intentional!

While glom is none of those tools, and none of those tools are glom, a little comparison doesn’t hurt. This document
collects analogies to help guide understanding along.

1.3. glom by Analogy 13

https://mail.python.org/pipermail/python-ideas/2015-September/036289.html
https://mail.python.org/pipermail/python-ideas/2016-November/043517.html
https://en.wikipedia.org/wiki/Null_coalescing_operator
https://docs.python.org/3/library/functions.html#getattr
http://boltons.readthedocs.io/en/latest/iterutils.html#boltons.iterutils.get_path

glom Documentation, Release 20.5.0

1.3.1 Similarity to list comprehensions

One of the key inspirations for glom was the humble list comprehension, one of my favorite Python features.

List comprehensions make your code look like its output, and that goes a long way in readability. glom itself does list
processing with square brackets like [lambda x: x % 2], which actually makes it more like a list comp and the
old filter() function.

glom’s list processing differs in two ways:

• Required use of a callable or other glom spec, to enable deferred processing.

• Ability to return SKIP, which can exclude items from a list.

1.3.2 Similarity to templating (Jinja, Django, Mustache)

glom is a lot like templating engines, including modern formatters like gofmt, but with all the format affordances
distilled out. glom doesn’t just work on HTML, XML, JSON, or even just strings.

glom works on objects, including functions, dicts, and all other primitives. In fact, it would be safe to call glom an
“object templating” system.

A lot of insights for glom came (and continue to come) from writing ashes.

1.3.3 Similarity to SQL and GraphQL

In some ways, glom is a Python query language for Python objects. But thanks to its restructuring capabilities, it’s
much more than SQL or GraphQL.

With SQL the primary abstraction is an table, or table-like resultset. With GraphQL, the analogous answer to this is,
of course, the graph.

glom goes further, not only offering the Python object tree as a graph, but also allowing you to change the shape of
the data, restructuring it while fetching and transforming values, which GraphQL only minimally supports, and SQL
barely supports at all. Table targets get you table outputs.

1.3.4 Similiarity to validation (jsonschema, schema, cerberus)

glom is a generalized form of intake libraries, and will have explicit validation support soon. We definitely took
schema becoming successful as a sign that others shared our appetite for succinct, declarative Python datastructure
manipulation.

More importantly, these libraries seem to excel at structuring and parsing data, and don’t solve much on the other end.
Translating valid, structured objects like database models to JSON serializable objects is glom’s forté.

1.3.5 Similarity to jq

The CLI that glom packs is very similar in function to jq, except it uses Python as its query language, instead of
making its own. Most importantly glom gives you a programmatic way forward.

1.3.6 Similarity to XPath/XSLT

These hallowed technologies of yore, they were way ahead of the game in many ways. glom intentionally avoids their
purity and verbosity, while trying to take as much inspiration as possible from their function.

14 Chapter 1. Installation

https://github.com/mahmoud/ashes
https://github.com/mahmoud/glom/issues/7
https://github.com/keleshev/schema
https://stedolan.github.io/jq/
http://sedimental.org/glom_restructured_data.html#library-first-then-cli

glom Documentation, Release 20.5.0

1.3.7 Others

Beyond what’s listed above, several other packages and language features exist in glom’s ballpark, including:

• Specter (for Clojure)

• Lenses (for Haskell)

• Dig (for Ruby Hashmaps)

If you know of other useful comparisons, let us know!

1.4 Examples & Snippets

glom can do a lot of things, in the right hands. This doc makes those hands yours, through sample code of useful
building blocks and common glom tasks.

Contents

• Reversing a Target

• Iteration Result as Tuple

• Data-Driven Assignment

• Construct Instance

• Filtered Iteration

• Preserve Type

• Automatic Django ORM type handling

• Filter Iterable

• Lisp-style If Extension

• Parellel Evaluation of Sub-Specs

• Clamp Values

• Transform Tree

• Fix Up Strings in Parsed JSON

Note: All samples below assume from glom import glom, T, Call and any other dependencies.

1.4.1 Reversing a Target

Here are a couple ways to reverse the current target. The first uses basic Python builtins, the second uses the T object.

glom([1, 2, 3], (reversed, list))
glom([1, 2, 3], T[::-1])

1.4. Examples & Snippets 15

https://github.com/nathanmarz/specter
https://hackage.haskell.org/package/lens
https://ruby-doc.org/core-2.3.0_preview1/Hash.html#dig
https://github.com/mahmoud/glom/issues/new

glom Documentation, Release 20.5.0

1.4.2 Iteration Result as Tuple

The default glom iteration specifier returns a list, but it’s easy to turn that list into a tuple. The following returns a
tuple of absolute-valued integers:

glom([-1, 2, -3], ([abs], tuple))

1.4.3 Data-Driven Assignment

glom’s dict specifier interprets the keys as constants. A different technique is required if the dict keys are part of the
target data rather than spec.

glom({1:2, 2:3}, Call(dict, args=(T.items(),)))
glom({1:2, 2:3}, lambda t: dict(t.items()))
glom({1:2, 2:3}, dict)

1.4.4 Construct Instance

A common use case is to construct an instance. In the most basic case, the default behavior on callable will suffice.

The following converts a list of ints to a list of decimal.Decimal objects.

glom([1, 2, 3], [Decimal])

If additional arguments are required, Call or lambda are good options.

This converts a list to a collection.deque, while specifying a max size of 10.

glom([1, 2, 3], Call(deque, args=[T, 10]))
glom([1, 2, 3], lambda t: deque(t, 10))

1.4.5 Filtered Iteration

Sometimes in addition to stepping through an iterable, you’d like to omit some of the items from the result set all
together. Here are two ways to filter the odd numbers from a list.

glom([1, 2, 3, 4, 5, 6], lambda t: [i for i in t if i % 2])
glom([1, 2, 3, 4, 5, 6], [lambda i: i if i % 2 else SKIP])

The second approach demonstrates the use of glom.SKIP to back out of an execution.

This can also be combined with Coalesce to filter items which are missing sub-attributes.

Here is an example of extracting the primary email from a group of contacts, skipping where the email is empty string,
None, or the attribute is missing.

glom(contacts, [Coalesce('primary_email.email', skip=('', None), default=SKIP)])

1.4.6 Preserve Type

The iteration specifier will walk lists and tuples. In some cases it would be convenient to preserve the target type in
the result type.

16 Chapter 1. Installation

https://docs.python.org/3/library/decimal.html#decimal.Decimal

glom Documentation, Release 20.5.0

This glomspec iterates over a tuple or list, adding one to each element, and uses T to return a tuple or list depending
on the target input’s type.

glom((1, 2, 3), (
{

"type": type,
"result": [lambda v: v + 1] # arbitrary operation

}, T['type'](T['result'])))

This demonstrates an advanced technique – just as a tuple can be used to process sub-specs “in series”, a dict can be
used to store intermediate results while processing sub-specs “in parallel” so they can then be recombined later on.

1.4.7 Automatic Django ORM type handling

In day-to-day Django ORM usage, Managers and QuerySets are everywhere. They work great with glom, too, but they
work even better when you don’t have to call .all() all the time. Enable automatic iteration using the following
register() technique:

import glom
import django.db.models

glom.register(django.db.models.Manager, iterate=lambda m: m.all())
glom.register(django.db.models.QuerySet, iterate=lambda qs: qs.all())

Call this in settings or somewhere similarly early in your application setup for the best results.

1.4.8 Filter Iterable

An iteration specifier can filter items out by using SKIP as the default of a Check object.

glom(['cat', 1, 'dog', 2], [Check(types=str, default=SKIP)])
['cat', 'dog']

You can also truncate the list at the first failing check by using STOP.

1.4.9 Lisp-style If Extension

Any class with a glomit method will be treated as a spec by glom. As an example, here is a lisp-style If expression
custom spec type:

class If(object):
def __init__(self, cond, if_, else_=None):

self.cond, self.if_, self.else_ = cond, if_, else_

def glomit(self, target, scope):
g = lambda spec: scope[glom](target, spec, scope)
if g(self.cond):

return g(self.if_)
elif self.else_:

return g(self.else_)
else:

return None

(continues on next page)

1.4. Examples & Snippets 17

https://docs.djangoproject.com/en/2.0/topics/db/managers/
https://docs.djangoproject.com/en/2.0/ref/models/querysets/

glom Documentation, Release 20.5.0

(continued from previous page)

glom(1, If(bool, {'yes': T}, {'no': T}))
{'yes': 1}
glom(0, If(bool, {'yes': T}, {'no': T}))
{'no': 0}

1.4.10 Parellel Evaluation of Sub-Specs

This is another example of a simple glom extension. Sometimes it is convenient to execute multiple glom-specs in
parallel against a target, and get a sequence of their results.

class Seq(object):
def __init__(self, *subspecs):

self.subspecs = subspecs

def glomit(self, target, scope):
return [scope[glom](target, spec, scope) for spec in self.subspecs]

glom('1', Seq(float, int))
[1.0, 1]

Without this extension, the simplest way to achieve the same result is with a dict:

glom('1', ({1: float, 2: int}, T.values()))

1.4.11 Clamp Values

A common numerical operation is to clamp values – if they are above or below a certain value, assign them to that
value.

Using a pattern-matching glom idiom, this can be implemented simply:

glom(range(10), [(M < 7) | Literal(7)])
[0, 1, 2, 3, 4, 5, 6, 7, 7, 7]

What if you want to drop rather than clamp out-of-range values?

glom(range(10), [(M < 7) | Literal(SKIP)])
[0, 1, 2, 3, 4, 5, 6]

1.4.12 Transform Tree

With an arbitrary depth tree, Ref can be used to express a recursive spec.

For example, this etree2dicts spec will recursively walk an ElementTree instance and transform it from nested objects
to nested dicts.

etree2dicts = Ref('ElementTree',
{"tag": "tag", "text": "text", "attrib": "attrib", "children": (iter, [Ref(

→˓'ElementTree')])})

Alternatively, say we only wanted to generate tuples of tag and children:

18 Chapter 1. Installation

glom Documentation, Release 20.5.0

etree2tuples = Fill(Ref('ElementTree', (T.tag, Iter(Ref('ElementTree')).all())))

(Note also the use of Fill mode to easily construct a tuple.)

<html>
<head>
<title>the title</title>

</head>
<body id="the-body">
<p>A paragraph</p>

</body>
</html>

Will translate to the following tuples:

>>> etree = ElementTree.fromstring(html_text)
>>> glom(etree, etree2tuples)
('html', [('head', [('title', [])]), ('body', [('p', [])])])

1.4.13 Fix Up Strings in Parsed JSON

Tree-walking with Ref() combines powerfully with pattern matching from Match().

In this case, consider that we want to transform parsed JSON recursively, such that all unicodes are converted to native
strings.

glom(json.loads(data),
Ref('json',

Match(Or(
And(dict, {Ref('json'): Ref('json')}),
And(list, [Ref('json')]),
And(type(u''), Auto(str)),
object))))

Match() above splits the Ref() evaluation into 4 cases:

• on dict, use Ref() to recurse for all keys and values

• on list, use Ref() to recurse on each item

• on text objects (type(u'')) – py3 str or py2 unicode – transform the target with str

• for all other values (object), pass them through

As motivation for why this might come up: attributes, class names, function names, and identifiers must be the native
string type for a given Python, i.e., bytestrings in Python 2 and unicode in Python 3.

1.5 glom Command-Line Interface

Note: glom’s CLI is still under construction. Definitely usable and useful, but glom is a library first, and if you’re
reading this, the CLI should not be considered stable.

All the power of glom, without even opening your text editor!

1.5. glom Command-Line Interface 19

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

glom Documentation, Release 20.5.0

$ glom --help
Usage: /home/mahmoud/virtualenvs/glom/bin/glom [FLAGS] [spec [target]]

Command-line interface to the glom library, providing nested data
access and data restructuring with the power of Python.

Flags:

--help / -h show this help message and exit
--target-file TARGET_FILE path to target data source (optional)
--target-format TARGET_FORMAT format of the source data (json or python)

(defaults to 'json')
--spec-file SPEC_FILE path to glom spec definition (optional)
--spec-format SPEC_FORMAT format of the glom spec definition (json, python,

python-full) (defaults to 'python')
--indent INDENT number of spaces to indent the result, 0 to disable

pretty-printing (defaults to 2)
--debug interactively debug any errors that come up
--inspect interactively explore the data

The glom command will also read from standard input (stdin) and process that data as the target.

Here’s an example, filtering a GitHub API example to something much more flat and readable:

$ pip install glom
$ curl -s https://api.github.com/repos/mahmoud/glom/events \

| glom '[{"type": "type", "date": "created_at", "user": "actor.login"}]'

This yields:

[
{
"date": "2018-05-09T03:39:44Z",
"type": "WatchEvent",
"user": "asapzacy"

},
{
"date": "2018-05-08T22:51:46Z",
"type": "WatchEvent",
"user": "CameronCairns"

},
{
"date": "2018-05-08T03:27:27Z",
"type": "PushEvent",
"user": "mahmoud"

},
{
"date": "2018-05-08T03:27:27Z",
"type": "PullRequestEvent",
"user": "mahmoud"

}
...

]

By default the CLI target is JSON and the spec is a Python literal.

Note: Because the default CLI spec is a Python literal, there are no lambdas and other Python/glom constructs
available. These features are gated behind the --spec-format python-full option to avoid code injection

20 Chapter 1. Installation

glom Documentation, Release 20.5.0

and other unwanted consequences.

The --debug and --inspect flags are useful for exploring data. Note that they are not available when piping data
through stdin. Save that API response to a file and use --target-file to do your interactive experimenting.

1.6 Core glom API

glom gets results.

The glom package has one central entrypoint, glom.glom(). Everything else in the package revolves around that
one function. Sometimes, big things come in small packages.

A couple of conventional terms you’ll see repeated many times below:

• target - glom is built to work on any data, so we simply refer to the object being accessed as the “target”

• spec - (aka “glomspec”, short for specification) The accompanying template used to specify the structure of the
return value.

Now that you know the terms, let’s take a look around glom’s powerful semantics.

See also:

As the glom API grows, we’ve refactored the docs into separate domains. The core API is below. More specialized
types can also be found in the following docs:

• Assignment & Mutation
• Streaming & Iteration
• Reduction & Grouping
• Matching & Validation

Longtime glom docs readers: thanks in advance for reporting/fixing any broken links you may find.

Contents

• The glom Function

• Basic Specifiers

• Object-Oriented Access and Method Calls with T

• Defaults with Coalesce

• Calling Callables with Invoke

– Alternative approach to functions: Call

• Self-Referential Specs

• Core Exceptions

• Setup and Registration

1.6.1 The glom Function

Where it all happens. The reason for the season. The eponymous function, glom().

1.6. Core glom API 21

glom Documentation, Release 20.5.0

glom.glom(target, spec, **kwargs)
Access or construct a value from a given target based on the specification declared by spec.

Accessing nested data, aka deep-get:

>>> target = {'a': {'b': 'c'}}
>>> glom(target, 'a.b')
'c'

Here the spec was just a string denoting a path, 'a.b.. As simple as it should be. The next example shows
how to use nested data to access many fields at once, and make a new nested structure.

Constructing, or restructuring more-complicated nested data:

>>> target = {'a': {'b': 'c', 'd': 'e'}, 'f': 'g', 'h': [0, 1, 2]}
>>> spec = {'a': 'a.b', 'd': 'a.d', 'h': ('h', [lambda x: x * 2])}
>>> output = glom(target, spec)
>>> pprint(output)
{'a': 'c', 'd': 'e', 'h': [0, 2, 4]}

glom also takes a keyword-argument, default. When set, if a glom operation fails with a GlomError, the
default will be returned, very much like dict.get():

>>> glom(target, 'a.xx', default='nada')
'nada'

The skip_exc keyword argument controls which errors should be ignored.

>>> glom({}, lambda x: 100.0 / len(x), default=0.0, skip_exc=ZeroDivisionError)
0.0

Parameters

• target (object) – the object on which the glom will operate.

• spec (object) – Specification of the output object in the form of a dict, list, tuple, string,
other glom construct, or any composition of these.

• default (object) – An optional default to return in the case an exception, specified by
skip_exc, is raised.

• skip_exc (Exception) – An optional exception or tuple of exceptions to ignore and
return default (None if omitted). If skip_exc and default are both not set, glom raises errors
through.

• scope (dict) – Additional data that can be accessed via S inside the glom-spec.

It’s a small API with big functionality, and glom’s power is only surpassed by its intuitiveness. Give it a whirl!

1.6.2 Basic Specifiers

Basic glom specifications consist of dict, list, tuple, str, and callable objects. However, as data calls for
more complicated interactions, glom provides specialized specifier types that can be used with the basic set of Python
builtins.

class glom.Path(*path_parts)
Path objects specify explicit paths when the default 'a.b.c'-style general access syntax won’t work or isn’t
desirable. Use this to wrap ints, datetimes, and other valid keys, as well as strings with dots that shouldn’t be
expanded.

22 Chapter 1. Installation

https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#dict

glom Documentation, Release 20.5.0

>>> target = {'a': {'b': 'c', 'd.e': 'f', 2: 3}}
>>> glom(target, Path('a', 2))
3
>>> glom(target, Path('a', 'd.e'))
'f'

Paths can be used to join together other Path objects, as well as T objects:

>>> Path(T['a'], T['b'])
T['a']['b']
>>> Path(Path('a', 'b'), Path('c', 'd'))
Path('a', 'b', 'c', 'd')

Paths also support indexing and slicing, with each access returning a new Path object:

>>> path = Path('a', 'b', 1, 2)
>>> path[0]
Path('a')
>>> path[-2:]
Path(1, 2)

class glom.Literal(value)
Literal objects specify literal values in rare cases when part of the spec should not be interpreted as a glommable
subspec. Wherever a Literal object is encountered in a spec, it is replaced with its wrapped value in the output.

>>> target = {'a': {'b': 'c'}}
>>> spec = {'a': 'a.b', 'readability': Literal('counts')}
>>> pprint(glom(target, spec))
{'a': 'c', 'readability': 'counts'}

Instead of accessing 'counts' as a key like it did with 'a.b', glom() just unwrapped the literal and
included the value.

Literal takes one argument, the literal value that should appear in the glom output.

This could also be achieved with a callable, e.g., lambda x: 'literal_string' in the spec, but using
a Literal object adds explicitness, code clarity, and a clean repr().

class glom.Spec(spec, scope=None)
Spec objects serve three purposes, here they are, roughly ordered by utility:

1. As a form of compiled or “curried” glom call, similar to Python’s built-in re.compile().

2. A marker as an object as representing a spec rather than a literal value in certain cases where that might be
ambiguous.

3. A way to update the scope within another Spec.

In the second usage, Spec objects are the complement to Literal, wrapping a value and marking that it should
be interpreted as a glom spec, rather than a literal value. This is useful in places where it would be interpreted
as a value by default. (Such as T[key], Call(func) where key and func are assumed to be literal values and not
specs.)

Parameters

• spec – The glom spec.

• scope (dict) – additional values to add to the scope when evaluating this Spec

See also:

Note that many of the Specifier types previously mentioned here have moved into their own docs, among them:

1.6. Core glom API 23

https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/re.html#re.compile
https://docs.python.org/3/library/stdtypes.html#dict

glom Documentation, Release 20.5.0

• Assignment & Mutation
• Streaming & Iteration
• Reduction & Grouping
• Matching & Validation

1.6.3 Object-Oriented Access and Method Calls with T

glom’s shortest-named feature may be its most powerful.

glom.T = T
T, short for “target”. A singleton object that enables object-oriented expression of a glom specification.

Note: T is a singleton, and does not need to be constructed.

Basically, think of T as your data’s stunt double. Everything that you do to T will be recorded and executed
during the glom() call. Take this example:

>>> spec = T['a']['b']['c']
>>> target = {'a': {'b': {'c': 'd'}}}
>>> glom(target, spec)
'd'

So far, we’ve relied on the 'a.b.c'-style shorthand for access, or used the Path objects, but if you want to
explicitly do attribute and key lookups, look no further than T.

But T doesn’t stop with unambiguous access. You can also call methods and perform almost any action you
would with a normal object:

>>> spec = ('a', (T['b'].items(), list)) # reviewed below
>>> glom(target, spec)
[('c', 'd')]

A T object can go anywhere in the spec. As seen in the example above, we access 'a', use a T to get 'b' and
iterate over its items, turning them into a list.

You can even use T with Call to construct objects:

>>> class ExampleClass(object):
... def __init__(self, attr):
... self.attr = attr
...
>>> target = {'attr': 3.14}
>>> glom(target, Call(ExampleClass, kwargs=T)).attr
3.14

On a further note, while lambda works great in glom specs, and can be very handy at times, T and Call
eliminate the need for the vast majority of lambda usage with glom.

Unlike lambda and other functions, T roundtrips beautifully and transparently:

>>> T['a'].b['c']('success')
T['a'].b['c']('success')

T-related access errors raise a PathAccessError during the glom() call.

24 Chapter 1. Installation

glom Documentation, Release 20.5.0

Note: While T is clearly useful, powerful, and here to stay, its semantics are still being refined. Currently,
operations beyond method calls and attribute/item access are considered experimental and should not be relied
upon.

1.6.4 Defaults with Coalesce

Data isn’t always where or what you want it to be. Use these specifiers to declare away overly branchy procedural
code.

class glom.Coalesce(*subspecs, **kwargs)
Coalesce objects specify fallback behavior for a list of subspecs.

Subspecs are passed as positional arguments, and keyword arguments control defaults. Each subspec is evaluated
in turn, and if none match, a CoalesceError is raised, or a default is returned, depending on the options used.

Note: This operation may seem very familar if you have experience with SQL or even C# and others.

In practice, this fallback behavior’s simplicity is only surpassed by its utility:

>>> target = {'c': 'd'}
>>> glom(target, Coalesce('a', 'b', 'c'))
'd'

glom tries to get 'a' from target, but gets a KeyError. Rather than raise a PathAccessError as usual,
glom coalesces into the next subspec, 'b'. The process repeats until it gets to 'c', which returns our value,
'd'. If our value weren’t present, we’d see:

>>> target = {}
>>> glom(target, Coalesce('a', 'b'))
Traceback (most recent call last):
...
CoalesceError: no valid values found. Tried ('a', 'b') and got (PathAccessError,
→˓PathAccessError) ...

Same process, but because target is empty, we get a CoalesceError. If we want to avoid an exception,
and we know which value we want by default, we can set default:

>>> target = {}
>>> glom(target, Coalesce('a', 'b', 'c'), default='d-fault')
'd-fault'

'a', 'b', and 'c' weren’t present so we got 'd-fault'.

Parameters

• subspecs – One or more glommable subspecs

• default – A value to return if no subspec results in a valid value

• default_factory – A callable whose result will be returned as a default

• skip – A value, tuple of values, or predicate function representing values to ignore

• skip_exc – An exception or tuple of exception types to catch and move on to the next
subspec. Defaults to GlomError, the parent type of all glom runtime exceptions.

1.6. Core glom API 25

https://en.wikipedia.org/w/index.php?title=Null_(SQL)&oldid=833093792#COALESCE
https://en.wikipedia.org/w/index.php?title=Null_coalescing_operator&oldid=839493322#C

glom Documentation, Release 20.5.0

If all subspecs produce skipped values or exceptions, a CoalesceError will be raised. For more examples,
check out the glom Tutorial, which makes extensive use of Coalesce.

glom.SKIP = Sentinel('SKIP')
The SKIP singleton can be returned from a function or included via a Literal to cancel assignment into the
output object.

>>> target = {'a': 'b'}
>>> spec = {'a': lambda t: t['a'] if t['a'] == 'a' else SKIP}
>>> glom(target, spec)
{}
>>> target = {'a': 'a'}
>>> glom(target, spec)
{'a': 'a'}

Mostly used to drop keys from dicts (as above) or filter objects from lists.

Note: SKIP was known as OMIT in versions 18.3.1 and prior. Versions 19+ will remove the OMIT alias
entirely.

glom.STOP = Sentinel('STOP')
The STOP singleton can be used to halt iteration of a list or execution of a tuple of subspecs.

>>> target = range(10)
>>> spec = [lambda x: x if x < 5 else STOP]
>>> glom(target, spec)
[0, 1, 2, 3, 4]

1.6.5 Calling Callables with Invoke

New in version 19.10.0.

From calling functions to constructing objects, it’s hardly Python if you’re not invoking callables. By default, single-
argument functions work great on their own in glom specs. The function gets passed the target and it just works:

>>> glom(['1', '3', '5'], [int])
[1, 3, 5]

Zero-argument and multi-argument functions get a lot trickier, especially when more than one of those arguments
comes from the target, thus the Invoke spec.

class glom.Invoke(func)
Specifier type designed for easy invocation of callables from glom.

Parameters func (callable) – A function or other callable object.

Invoke is similar to functools.partial(), but with the ability to set up a “templated” call which inter-
leaves constants and glom specs.

For example, the following creates a spec which can be used to check if targets are integers:

>>> is_int = Invoke(isinstance).specs(T).constants(int)
>>> glom(5, is_int)
True

And this composes like any other glom spec:

26 Chapter 1. Installation

https://docs.python.org/3/library/functools.html#functools.partial

glom Documentation, Release 20.5.0

>>> target = [7, object(), 9]
>>> glom(target, [is_int])
[True, False, True]

Another example, mixing positional and keyword arguments:

>>> spec = Invoke(sorted).specs(T).constants(key=int, reverse=True)
>>> target = ['10', '5', '20', '1']
>>> glom(target, spec)
['20', '10', '5', '1']

Invoke also helps with evaluating zero-argument functions:

>>> glom(target={}, spec=Invoke(int))
0

(A trivial example, but from timestamps to UUIDs, zero-arg calls do come up!)

Note: Invoke is mostly for functions, object construction, and callable objects. For calling methods, consider
the T object.

constants(*a, **kw)
Returns a new Invoke spec, with the provided positional and keyword argument values stored for passing
to the underlying function.

>>> spec = Invoke(T).constants(5)
>>> glom(range, (spec, list))
[0, 1, 2, 3, 4]

Subsequent positional arguments are appended:

>>> spec = Invoke(T).constants(2).constants(10, 2)
>>> glom(range, (spec, list))
[2, 4, 6, 8]

Keyword arguments also work as one might expect:

>>> round_2 = Invoke(round).constants(ndigits=2).specs(T)
>>> glom(3.14159, round_2)
3.14

constants() and other Invoke methods may be called multiple times, just remember that every call
returns a new spec.

classmethod specfunc(spec)
Creates an Invoke instance where the function is indicated by a spec.

>>> spec = Invoke.specfunc('func').constants(5)
>>> glom({'func': range}, (spec, list))
[0, 1, 2, 3, 4]

specs(*a, **kw)
Returns a new Invoke spec, with the provided positional and keyword arguments stored to be interpreted
as specs, with the results passed to the underlying function.

1.6. Core glom API 27

glom Documentation, Release 20.5.0

>>> spec = Invoke(range).specs('value')
>>> glom({'value': 5}, (spec, list))
[0, 1, 2, 3, 4]

Subsequent positional arguments are appended:

>>> spec = Invoke(range).specs('start').specs('end', 'step')
>>> target = {'start': 2, 'end': 10, 'step': 2}
>>> glom(target, (spec, list))
[2, 4, 6, 8]

Keyword arguments also work as one might expect:

>>> multiply = lambda x, y: x * y
>>> times_3 = Invoke(multiply).constants(y=3).specs(x='value')
>>> glom({'value': 5}, times_3)
15

specs() and other Invoke methods may be called multiple times, just remember that every call returns
a new spec.

star(args=None, kwargs=None)
Returns a new Invoke spec, with args and/or kwargs specs set to be “starred” or “star-starred” (respec-
tively)

>>> import os.path
>>> spec = Invoke(os.path.join).star(args='path')
>>> target = {'path': ['path', 'to', 'dir']}
>>> glom(target, spec)
'path/to/dir'

Parameters

• args (spec) – A spec to be evaluated and “starred” into the underlying function.

• kwargs (spec) – A spec to be evaluated and “star-starred” into the underlying function.

One or both of the above arguments should be set.

The star(), like other Invoke methods, may be called multiple times. The args and kwargs will be
stacked in the order in which they are provided.

Alternative approach to functions: Call

An earlier, more primitive approach to callables in glom was the Call specifier type.

Warning: Given superiority of its successor, Invoke, the Call type may be deprecated in a future release.

class glom.Call(func=None, args=None, kwargs=None)
Call specifies when a target should be passed to a function, func.

Call is similar to partial() in that it is no more powerful than lambda or other functions, but it is designed
to be more readable, with a better repr.

Parameters func (callable) – a function or other callable to be called with the target

28 Chapter 1. Installation

https://docs.python.org/3/library/functools.html#functools.partial

glom Documentation, Release 20.5.0

Call combines well with T to construct objects. For instance, to generate a dict and then pass it to a constructor:

>>> class ExampleClass(object):
... def __init__(self, attr):
... self.attr = attr
...
>>> target = {'attr': 3.14}
>>> glom(target, Call(ExampleClass, kwargs=T)).attr
3.14

This does the same as glom(target, lambda target: ExampleClass(**target)), but it’s
easy to see which one reads better.

Note: Call is mostly for functions. Use a T object if you need to call a method.

Warning: Call has a successor with a fuller-featured API, new in 19.10.0: the Invoke specifier type.

1.6.6 Self-Referential Specs

Sometimes nested data repeats itself, either recursive structure or just through redundancy.

class glom.Ref(name, subspec=Sentinel(’_MISSING’))
Name a part of a spec and refer to it elsewhere in the same spec, useful for trees and other self-similar data
structures.

Parameters

• name (str) – The name of the spec to reference.

• subspec – Pass a spec to name it name, or leave unset to refer to an already-named spec.

1.6.7 Core Exceptions

Not all data is going to match specifications. Luckily, glom errors are designed to be as readable and actionable as
possible.

All glom exceptions inherit from GlomError, described below, along with other core exception types. For more
details about handling and debugging exceptions, see “Exceptions & Debugging”.

class glom.PathAccessError(exc, path, part_idx)
This GlomError subtype represents a failure to access an attribute as dictated by the spec. The most
commonly-seen error when using glom, it maintains a copy of the original exception and produces a readable
error message for easy debugging.

If you see this error, you may want to:

• Check the target data is accurate using Inspect

• Catch the exception and return a semantically meaningful error message

• Use glom.Coalesce to specify a default

• Use the top-level default kwarg on glom()

In any case, be glad you got this error and not the one it was wrapping!

Parameters

1.6. Core glom API 29

https://docs.python.org/3/library/stdtypes.html#str

glom Documentation, Release 20.5.0

• exc (Exception) – The error that arose when we tried to access path. Typically an
instance of KeyError, AttributeError, IndexError, or TypeError, and sometimes others.

• path (Path) – The full Path glom was in the middle of accessing when the error occurred.

• part_idx (int) – The index of the part of the path that caused the error.

>>> target = {'a': {'b': None}}
>>> glom(target, 'a.b.c')
Traceback (most recent call last):
...
PathAccessError: could not access 'c', part 2 of Path('a', 'b', 'c'), got error: .
→˓..

class glom.CoalesceError(coal_obj, skipped, path)
This GlomError subtype is raised from within a Coalesce spec’s processing, when none of the subspecs
match and no default is provided.

The exception object itself keeps track of several values which may be useful for processing:

Parameters

• coal_obj (Coalesce) – The original failing spec, see Coalesce’s docs for details.

• skipped (list) – A list of ignored values and exceptions, in the order that their respective
subspecs appear in the original coal_obj.

• path – Like many GlomErrors, this exception knows the path at which it occurred.

>>> target = {}
>>> glom(target, Coalesce('a', 'b'))
Traceback (most recent call last):
...
CoalesceError: no valid values found. Tried ('a', 'b') and got (PathAccessError,
→˓PathAccessError) ...

class glom.UnregisteredTarget(op, target_type, type_map, path)
This GlomError subtype is raised when a spec calls for an unsupported action on a target type. For instance,
trying to iterate on an non-iterable target:

>>> glom(object(), ['a.b.c'])
Traceback (most recent call last):
...
UnregisteredTarget: target type 'object' not registered for 'iterate', expected
→˓one of registered types: (...)

It should be noted that this is a pretty uncommon occurrence in production glom usage. See the Setup and
Registration section for details on how to avoid this error.

An UnregisteredTarget takes and tracks a few values:

Parameters

• op (str) – The name of the operation being performed (‘get’ or ‘iterate’)

• target_type (type) – The type of the target being processed.

• type_map (dict) – A mapping of target types that do support this operation

• path – The path at which the error occurred.

class glom.GlomError
The base exception for all the errors that might be raised from glom() processing logic.

30 Chapter 1. Installation

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#dict

glom Documentation, Release 20.5.0

By default, exceptions raised from within functions passed to glom (e.g., len, sum, any lambda) will not be
wrapped in a GlomError.

1.6.8 Setup and Registration

When it comes to targets, glom() will operate on the vast majority of objects out there in Python-land. However, for
that very special remainder, glom is readily extensible!

glom.register(target_type, **kwargs)
Register target_type so glom() will know how to handle instances of that type as targets.

Parameters

• target_type (type) – A type expected to appear in a glom() call target

• get (callable) – A function which takes a target object and a name, acting as a default
accessor. Defaults to getattr().

• iterate (callable) – A function which takes a target object and returns an iterator.
Defaults to iter() if target_type appears to be iterable.

• exact (bool) – Whether or not to match instances of subtypes of target_type.

Note: The module-level register() function affects the module-level glom() function’s behavior. If
this global effect is undesirable for your application, or you’re implementing a library, consider instantiating a
Glommer instance, and using the register() and Glommer.glom() methods instead.

class glom.Glommer(**kwargs)
The Glommer type mostly serves to encapsulate type registration context so that advanced uses of glom don’t
need to worry about stepping on each other.

Glommer objects are lightweight and, once instantiated, provide a glom() method:

>>> glommer = Glommer()
>>> glommer.glom({}, 'a.b.c', default='d')
'd'
>>> Glommer().glom({'vals': list(range(3))}, ('vals', len))
3

Instances also provide register() method for localized control over type handling.

Parameters register_default_types (bool) – Whether or not to enable the handling be-
haviors of the default glom(). These default actions include dict access, list and iterable itera-
tion, and generic object attribute access. Defaults to True.

1.7 Assignment & Mutation

By default, glom aims to safely return a transformed copy of your data. But sometimes you really need to transform
an existing object.

When you already have a large or complex bit of nested data that you are sure you want to modify in-place, glom has
you covered, with the assign() function, and the Assign() specifier type.

1.7. Assignment & Mutation 31

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#getattr
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

glom Documentation, Release 20.5.0

Contents

• Assignment

• Deletion

• Exceptions

1.7.1 Assignment

Deeply assign within an existing structure, given a path and a value.

glom.assign(obj, path, val, missing=None)
New in glom 18.3.0

The assign() function provides convenient “deep set” functionality, modifying nested data structures in-
place:

>>> target = {'a': [{'b': 'c'}, {'d': None}]}
>>> _ = assign(target, 'a.1.d', 'e') # let's give 'd' a value of 'e'
>>> pprint(target)
{'a': [{'b': 'c'}, {'d': 'e'}]}

Missing structures can also be automatically created with the missing parameter. For more information and
examples, see the Assign specifier type, which this function wraps.

class glom.Assign(path, val, missing=None)
New in glom 18.3.0

The Assign specifier type enables glom to modify the target, performing a “deep-set” to mirror glom’s original
deep-get use case.

Assign can be used to perform spot modifications of large data structures when making a copy is not desired:

deep assignment into a nested dictionary
>>> target = {'a': {}}
>>> spec = Assign('a.b', 'value')
>>> _ = glom(target, spec)
>>> pprint(target)
{'a': {'b': 'value'}}

The value to be assigned can also be a Spec, which is useful for copying values around within the data structure:

copying one nested value to another
>>> _ = glom(target, Assign('a.c', Spec('a.b')))
>>> pprint(target)
{'a': {'b': 'value', 'c': 'value'}}

Another handy use of Assign is to deep-apply a function:

sort a deep nested list
>>> target={'a':{'b':[3,1,2]}}
>>> _ = glom(target, Assign('a.b', Spec(('a.b',sorted))))
>>> pprint(target)
{'a': {'b': [1, 2, 3]}}

Like many other specifier types, Assign’s destination path can be a T expression, for maximum control:

32 Chapter 1. Installation

glom Documentation, Release 20.5.0

changing the error message of an exception in an error list
>>> err = ValueError('initial message')
>>> target = {'errors': [err]}
>>> _ = glom(target, Assign(T['errors'][0].args, ('new message',)))
>>> str(err)
'new message'

Assign has built-in support for assigning to attributes of objects, keys of mappings (like dicts), and indexes of
sequences (like lists). Additional types can be registered through register() using the "assign" operation
name.

Attempting to assign to an immutable structure, like a tuple, will result in a PathAssignError. Attempt-
ing to assign to a path that doesn’t exist will raise a PathAccessError.

To automatically backfill missing structures, you can pass a callable to the missing argument. This callable will
be called for each path segment along the assignment which is not present.

>>> target = {}
>>> assign(target, 'a.b.c', 'hi', missing=dict)
{'a': {'b': {'c': 'hi'}}}

1.7.2 Deletion

Delete attributes from objects and keys from containers.

glom.delete(obj, path, ignore_missing=False)
The delete() function provides “deep del” functionality, modifying nested data structures in-place:

>>> target = {'a': [{'b': 'c'}, {'d': None}]}
>>> delete(target, 'a.0.b')
{'a': [{}, {'d': None}]}

Attempting to delete missing keys, attributes, and indexes will raise a PathDeleteError. To ignore these
errors, use the ignore_missing argument:

>>> delete(target, 'does_not_exist', ignore_missing=True)
{'a': [{}, {'d': None}]}

For more information and examples, see the Delete specifier type, which this convenience function wraps.

New in version 20.5.0.

class glom.Delete(path, ignore_missing=False)
In addition to glom’s core “deep-get” and Assign’s “deep-set”, the Delete specifier type performs a “deep-
del”, which can remove items from larger data structures by key, attribute, and index.

>>> target = {'dict': {'x': [5, 6, 7]}}
>>> glom(target, Delete('dict.x.1'))
{'dict': {'x': [5, 7]}}
>>> glom(target, Delete('dict.x'))
{'dict': {}}

If a target path is missing, a PathDeleteError will be raised. To ignore missing targets, use the
ignore_missing flag:

>>> glom(target, Delete('does_not_exist', ignore_missing=True))
{'dict': {}}

1.7. Assignment & Mutation 33

https://docs.python.org/3/library/stdtypes.html#tuple

glom Documentation, Release 20.5.0

Delete has built-in support for deleting attributes of objects, keys of dicts, and indexes of sequences (like
lists). Additional types can be registered through register() using the "delete" operation name.

New in version 20.5.0.

1.7.3 Exceptions

class glom.PathAssignError(exc, path, dest_name)
This GlomError subtype is raised when an assignment fails, stemming from an assign() call or other
Assign usage.

One example would be assigning to an out-of-range position in a list:

>>> assign(["short", "list"], Path(5), 'too far')
Traceback (most recent call last):
...
PathAssignError: could not assign 5 on object at Path(), got error: IndexError(...

Other assignment failures could be due to assigning to an @property or exception being raised inside a
__setattr__().

class glom.PathDeleteError(exc, path, dest_name)
This GlomError subtype is raised when an assignment fails, stemming from an delete() call or other
Delete usage.

One example would be deleting an out-of-range position in a list:

>>> delete(["short", "list"], Path(5))
Traceback (most recent call last):
...
PathDeleteError: could not delete 5 on object at Path(), got error: IndexError(...

Other assignment failures could be due to deleting a read-only @property or exception being raised inside a
__delattr__().

1.8 Streaming & Iteration

New in version 19.10.0. glom’s helpers for streaming use cases.

Specifier types which yield their results incrementally so that they can be applied to targets which are themselves
streaming (e.g. chunks of rows from a database, lines from a file) without excessive memory usage.

glom’s streaming functionality revolves around a single Iter Specifier type, which has methods to transform the
target stream.

class glom.Iter(subspec=T, **kwargs)
Iter() is glom’s counterpart to Python’s built-in iter() function. Given an iterable target, Iter() yields
the result of applying the passed spec to each element of the target, similar to the built-in [] spec, but streaming.

The following turns a list of strings into integers using Iter(), before deduplicating and converting it to a tuple:

>>> glom(['1', '2', '1', '3'], (Iter(int), set, tuple))
(1, 2, 3)

Iter() also has many useful methods which can be chained to compose a stream processing pipeline. The
above can also be written as:

34 Chapter 1. Installation

https://docs.python.org/3/library/functions.html#iter

glom Documentation, Release 20.5.0

>>> glom(['1', '2', '1', '3'], (Iter().map(int).unique(), tuple))
(1, 2, 3)

Iter() also respects glom’s SKIP and STOP singletons for filtering and breaking iteration.

Parameters

• subspec – A subspec to be applied on each element from the iterable.

• sentinel – Keyword-only argument, which, when found in the iterable stream, causes
the iteration to stop. Same as with the built-in iter().

map(subspec)
Return a new Iter() spec which will apply the provided subspec to each element of the iterable.

>>> glom(range(5), Iter().map(lambda x: x * 2).all())
[0, 2, 4, 6, 8]

Because a spec can be a callable, Iter.map() does everything the built-in map() does, but with the
full power of glom specs.

>>> glom(['a', 'B', 'C'], Iter().map(T.islower()).all())
[True, False, False]

filter(key=T)
Return a new Iter() spec which will include only elements matching the given key.

>>> glom(range(6), Iter().filter(lambda x: x % 2).all())
[1, 3, 5]

Because a spec can be a callable, Iter.filter() does everything the built-in filter() does, but
with the full power of glom specs. For even more power, combine, Iter.filter() with Check().

>>> # PROTIP: Python's ints know how many binary digits they require, using
→˓the bit_length method
>>> glom(range(9), Iter().filter(Check(T.bit_length(), one_of=(2, 4),
→˓default=SKIP)).all())
[2, 3, 8]

chunked(size, fill=Sentinel(’_MISSING’))
Return a new Iter() spec which groups elements in the iterable into lists of length size.

If the optional fill argument is provided, iterables not evenly divisible by size will be padded out by the fill
constant. Otherwise, the final chunk will be shorter than size.

>>> list(glom(range(10), Iter().chunked(3)))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> list(glom(range(10), Iter().chunked(3, fill=None)))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]

split(sep=None, maxsplit=None)
Return a new Iter() spec which will lazily split an iterable based on a separator (or list of separators),
sep. Like str.split(), but for all iterables.

split_iter() yields lists of non-separator values. A separator will never appear in the output.

>>> target = [1, 2, None, None, 3, None, 4, None]
>>> list(glom(target, Iter().split()))
[[1, 2], [3], [4]]

1.8. Streaming & Iteration 35

https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/stdtypes.html#str.split

glom Documentation, Release 20.5.0

Note that split_iter is based on str.split(), so if sep is None, split() groups separators. If
empty lists are desired between two contiguous None values, simply use sep=[None]:

>>> list(glom(target, Iter().split(sep=[None])))
[[1, 2], [], [3], [4], []]

A max number of splits may also be set:

>>> list(glom(target, Iter().split(maxsplit=2)))
[[1, 2], [3], [4, None]]

flatten()
Returns a new Iter() instance which combines iterables into a single iterable.

>>> target = [[1, 2], [3, 4], [5]]
>>> list(glom(target, Iter().flatten()))
[1, 2, 3, 4, 5]

unique(key=T)
Return a new Iter() spec which lazily filters out duplicate values, i.e., only the first appearance of a
value in a stream will be yielded.

>>> target = list('gloMolIcious')
>>> out = list(glom(target, Iter().unique(T.lower())))
>>> print(''.join(out))
gloMIcus

limit(count)
A convenient alias for slice(), which takes a single argument, count, the max number of items to yield.

slice(*args)
Returns a new Iter() spec which trims iterables in the same manner as itertools.islice().

>>> target = [0, 1, 2, 3, 4, 5]
>>> glom(target, Iter().slice(3).all())
[0, 1, 2]
>>> glom(target, Iter().slice(2, 4).all())
[2, 3]

This method accepts only positional arguments.

takewhile(key=T)
Returns a new Iter() spec which stops the stream once key becomes falsy.

>>> glom([3, 2, 0, 1], Iter().takewhile().all())
[3, 2]

itertools.takewhile() for more details.

dropwhile(key=T)
Returns a new Iter() spec which drops stream items until key becomes falsy.

>>> glom([0, 0, 3, 2, 0], Iter().dropwhile(lambda t: t < 1).all())
[3, 2, 0]

Note that while similar to Iter.filter(), the filter only applies to the beginning of the stream.
In a way, Iter.dropwhile() can be thought of as lstrip() for streams. See itertools.
dropwhile() for more details.

36 Chapter 1. Installation

https://docs.python.org/3/library/itertools.html#itertools.islice
https://docs.python.org/3/library/itertools.html#itertools.takewhile
https://docs.python.org/3/library/stdtypes.html#str.lstrip
https://docs.python.org/3/library/itertools.html#itertools.dropwhile
https://docs.python.org/3/library/itertools.html#itertools.dropwhile

glom Documentation, Release 20.5.0

all()
A convenience method which returns a new spec which turns an iterable into a list.

>>> glom(range(5), Iter(lambda t: t * 2).all())
[0, 2, 4, 6, 8]

Note that this spec will always consume the whole iterable, and as such, the spec returned is not an
Iter() instance.

first(key=T, default=None)
A convenience method for lazily yielding a single truthy item from an iterable.

>>> target = [False, 1, 2, 3]
>>> glom(target, Iter().first())
1

This method takes a condition, key, which can also be a glomspec, as well as a default, in case nothing
matches the condition.

As this spec yields at most one item, and not an iterable, the spec returned from this method is not an
Iter() instance.

1.9 Reduction & Grouping

This document contains glom techniques for transforming a collection of data to a smaller set, otherwise known as
“grouping” or “reduction”.

1.9.1 Combining iterables with Flatten and Merge

New in version 19.1.0.

Got lists of lists? Sets of tuples? A sequence of dicts (but only want one)? Do you find yourself reaching for
Python’s builtin sum() and reduce()? To handle these situations and more, glom has five specifier types and two
convenience functions:

glom.flatten(target, **kwargs)
At its most basic, flatten() turns an iterable of iterables into a single list. But it has a few arguments which
give it more power:

Parameters

• init (callable) – A function or type which gives the initial value of the return. The
value must support addition. Common values might be list (the default), tuple, or even
int. You can also pass init="lazy" to get a generator.

• levels (int) – A positive integer representing the number of nested levels to flatten.
Defaults to 1.

• spec – The glomspec to fetch before flattening. This defaults to the the root level of the
object.

Usage is straightforward.

>>> target = [[1, 2], [3], [4]]
>>> flatten(target)
[1, 2, 3, 4]

1.9. Reduction & Grouping 37

https://docs.python.org/3/library/functions.html#sum
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

glom Documentation, Release 20.5.0

Because integers themselves support addition, we actually have two levels of flattening possible, to get back a
single integer sum:

>>> flatten(target, init=int, levels=2)
10

However, flattening a non-iterable like an integer will raise an exception:

>>> target = 10
>>> flatten(target)
Traceback (most recent call last):
...
FoldError: can only Flatten on iterable targets, not int type (...)

By default, flatten() will add a mix of iterables together, making it a more-robust alternative to the built-in
sum(list_of_lists, list()) trick most experienced Python programmers are familiar with using:

>>> list_of_iterables = [range(2), [2, 3], (4, 5)]
>>> sum(list_of_iterables, [])
Traceback (most recent call last):
...
TypeError: can only concatenate list (not "tuple") to list

Whereas flatten() handles this just fine:

>>> flatten(list_of_iterables)
[0, 1, 2, 3, 4, 5]

The flatten() function is a convenient wrapper around the Flatten specifier type. For embedding in
larger specs, and more involved flattening, see Flatten and its base, Fold.

class glom.Flatten(subspec=T, init=<type ’list’>)
The Flatten specifier type is used to combine iterables. By default it flattens an iterable of iterables into a single
list containing items from all iterables.

>>> target = [[1], [2, 3]]
>>> glom(target, Flatten())
[1, 2, 3]

You can also set init to "lazy", which returns a generator instead of a list. Use this to avoid making extra lists
and other collections during intermediate processing steps.

glom.merge(target, **kwargs)
By default, merge() turns an iterable of mappings into a single, merged dict, leveraging the behavior of the
update() method. A new mapping is created and none of the passed mappings are modified.

>>> target = [{'a': 'alpha'}, {'b': 'B'}, {'a': 'A'}]
>>> res = merge(target)
>>> pprint(res)
{'a': 'A', 'b': 'B'}

Parameters target – The list of dicts, or some other iterable of mappings.

The start state can be customized with the init keyword argument, as well as the update operation, with the op
keyword argument. For more on those customizations, see the Merge spec.

38 Chapter 1. Installation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict.update

glom Documentation, Release 20.5.0

class glom.Merge(subspec=T, init=<type ’dict’>, op=None)
By default, Merge turns an iterable of mappings into a single, merged dict, leveraging the behavior of the
update() method. The start state can be customized with init, as well as the update operation, with op.

Parameters

• subspec – The location of the iterable of mappings. Defaults to T.

• init (callable) – A type or callable which returns a base instance into which all other
values will be merged.

• op (callable) – A callable, which takes two arguments, and performs a merge of the
second into the first. Can also be the string name of a method to fetch on the instance
created from init. Defaults to "update".

Note: Besides the differing defaults, the primary difference between Merge and other Fold subtypes is that its
op argument is assumed to be a two-argument function which has no return value and modifies the left parameter
in-place. Because the initial state is a new object created with the init parameter, none of the target values are
modified.

class glom.Sum(subspec=T, init=<type ’int’>)
The Sum specifier type is used to aggregate integers and other numericals using addition, much like the sum()
builtin.

>>> glom(range(5), Sum())
10

Note that this specifier takes a callable init parameter like its friends, so to change the start value, be sure to
wrap it in a callable:

>>> glom(range(5), Sum(init=lambda: 5.0))
15.0

To “sum” lists and other iterables, see the Flatten spec. For other objects, see the Fold specifier type.

class glom.Fold(subspec, init, op=<built-in function iadd>)
The Fold specifier type is glom’s building block for reducing iterables in data, implementing the classic fold
from functional programming, similar to Python’s built-in reduce().

Parameters

• subspec – A spec representing the target to fold, which must be an iterable, or otherwise
registered to ‘iterate’ (with register()).

• init (callable) – A function or type which will be invoked to initialize the accumulator
value.

• op (callable) – A function to call on the accumulator value and every value, the result
of which will become the new accumulator value. Defaults to operator.iadd().

Usage is as follows:

>>> target = [set([1, 2]), set([3]), set([2, 4])]
>>> result = glom(target, Fold(T, init=frozenset, op=frozenset.union))
>>> result == frozenset([1, 2, 3, 4])
True

Note the required spec and init arguments. op is optional, but here must be used because the set and
frozenset types do not work with addition.

1.9. Reduction & Grouping 39

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict.update
https://docs.python.org/3/library/functions.html#sum
https://en.wikipedia.org/wiki/Fold_(higher-order_function)
https://docs.python.org/3/library/operator.html#operator.iadd
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#frozenset

glom Documentation, Release 20.5.0

While Fold is powerful, Flatten and Sum are subtypes with more convenient defaults for day-to-day use.

1.9.2 Exceptions

class glom.FoldError
Error raised when Fold() is called on non-iterable targets, and possibly other uses in the future.

1.10 Matching & Validation

New in version 20.7.0.

Sometimes you want to confirm that your target data matches your code’s assumptions. With glom, you don’t need a
separate validation step, you can do these checks inline with your glom spec, using Match and friends.

Contents

• Validation with Match

• Optional and required dict key matching

• M Expressions

• Boolean operators and matching

• String matching

• Exceptions

• Validation with Check

1.10.1 Validation with Match

For matching whole data structures, use a Match spec.

class glom.Match(spec, default=Sentinel(’_MISSING’))
glom’s Match specifier type enables a new mode of glom usage: pattern matching. In particular, this mode has
been designed for nested data validation.

Pattern specs are evaluated as follows:

1. Spec instances are always evaluated first

2. Types match instances of that type

3. Instances of dict, list, tuple, set, and frozenset are matched recursively

4. Any other values are compared for equality to the target with ==

By itself, this allows to assert that structures match certain patterns, and may be especially familiar to users of
the schema library.

For example, let’s load some data:

>>> target = [
... {'id': 1, 'email': 'alice@example.com'},
... {'id': 2, 'email': 'bob@example.com'}]

40 Chapter 1. Installation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#frozenset
https://github.com/keleshev/schema

glom Documentation, Release 20.5.0

A Match pattern can be used to ensure this data is in its expected form:

>>> spec = Match([{'id': int, 'email': str}])

This spec succinctly describes our data structure’s pattern Specifically, a list of dict objects, each of which
has exactly two keys, 'id' and 'email', whose values are an int and str, respectively. Now, glom()
will ensure our target matches our pattern spec:

>>> result = glom(target, spec)
>>> assert result == \
... [{'id': 1, 'email': 'alice@example.com'}, {'id': 2, 'email': 'bob@example.com
→˓'}]

With a more complex Match spec, we can be more precise:

>>> spec = Match([{'id': And(M > 0, int), 'email': Regex('[^@]+@[^@]+')}])

And allows multiple conditions to be applied. Regex evaluates the regular expression against the target value
under the 'email' key. In this case, we take a simple approach: an email has exactly one @, with at least one
character before and after.

Finally, M is our stand-in for the current target we’re matching against, allowing us to perform in-line compar-
isons using Python’s native greater-than operator (as well as others). We apply our Match pattern as before:

>>> assert glom(target, spec) == \
... [{'id': 1, 'email': 'alice@example.com'}, {'id': 2, 'email': 'bob@example.com
→˓'}]

And as usual, upon a successful match, we get the matched result.

Note: For Python 3.6+ where dictionaries are ordered, keys in the target are matched against keys in the spec
in their insertion order.

Parameters

• spec – The glomspec representing the pattern to match data against.

• default – The default value to be returned if a match fails. If not set, a match failure will
raise a MatchError.

matches(target)
A convenience method on a Match instance, returns True if the target matches, False if not.

>>> Match(int).matches(-1.0)
False

Parameters target – Target value or data structure to match against.

verify(target)
A convenience function a Match instance which returns the matched value when target matches, or raises
a MatchError when it does not.

Parameters target – Target value or data structure to match against.

Raises glom.MatchError

1.10. Matching & Validation 41

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

glom Documentation, Release 20.5.0

1.10.2 Optional and required dict key matching

Note that our four Match rules above imply that object is a match-anything pattern. Because isinstance(val,
object) is true for all values in Python, object is a useful stopping case. For instance, if we wanted to extend
an example above to allow additional keys and values in the user dict above we could add object as a generic pass
through:

>>> target = [{'id': 1, 'email': 'alice@example.com', 'extra': 'val'}]
>>> spec = Match([{'id': int, 'email': str, object: object}]))
>>> assert glom(target, spec) == \\

... [{'id': 1, 'email': 'alice@example.com', 'extra': 'val'}]
True

The fact that {object: object} will match any dictionary exposes the subtlety in Match dictionary evaluation.

By default, value match keys are required, and other keys are optional. For example, 'id' and 'email' above
are required because they are matched via ==. If either was not present, it would raise class:~glom.MatchError.
class:object however is matched with func:isinstance(). Since it is not an value-match comparison, it is not required.

This default behavior can be modified with Required and Optional.

class glom.Optional(key, default=Sentinel(’_MISSING’))
Used as a dict key in a Match() spec, marks that a value match key which would otherwise be required is
optional and should not raise MatchError even if no keys match.

For example:

>>> spec = Match({Optional("name"): str})
>>> glom({"name": "alice"}, spec)
{'name': 'alice'}
>>> glom({}, spec)
{}
>>> spec = Match({Optional("name", default=""): str})
>>> glom({}, spec)
{'name': ''}

class glom.Required(key)
Used as a dict key in Match() mode, marks that a key which might otherwise not be required should raise
MatchError if the key in the target does not match.

For example:

>>> spec = Match({object: object})

This spec will match any dict, because object is the base type of every object:

>>> glom({}, spec)
{}

{} will also match because match mode does not require at least one match by default. If we want to require
that a key matches, we can use Required:

>>> spec = Match({Required(object): object})
>>> glom({}, spec)
Traceback (most recent call last):
...
MatchError: error raised while processing.
Target-spec trace, with error detail (most recent last):

(continues on next page)

42 Chapter 1. Installation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

glom Documentation, Release 20.5.0

(continued from previous page)

- Target: {}
- Spec: Match({Required(object): <type 'object'>})
- Spec: {Required(object): <type 'object'>}
MatchError: target missing expected keys Required(object)

Now our spec requires at least one key of any type. You can refine the spec by putting more specific subpatterns
inside of Required.

1.10.3 M Expressions

The most concise way to express validation and guards.

glom.M = M
M is similar to T, a stand-in for the current target, but where T allows for attribute and key access and method
calls, M allows for comparison operators.

If a comparison succeeds, the target is returned unchanged. If a comparison fails, MatchError is thrown.

Some examples:

>>> glom(1, M > 0)
1
>>> glom(0, M == 0)
0
>>> glom('a', M != 'b') == 'a'
True

M by itself evaluates the current target for truthiness. For example, M | Literal(None) is a simple idiom for
normalizing all falsey values to None:

>>> from glom import Literal
>>> glom([0, False, "", None], [M | Literal(None)])
[None, None, None, None]

For convenience, & and | operators are overloaded to construct And and Or instances.

>>> glom(1.0, (M > 0) & float)
1.0

Note: Python’s operator overloading may make for concise code, but it has its limits.

Because bitwise operators (& and |) have higher precedence than comparison operators (>, <, etc.), expressions
must be parenthesized.

>>> M > 0 & float
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for &: 'int' and 'type'

Similarly, because of special handling around ternary comparisons (1 < M < 5) are implemented via short-
circuiting evaluation, they also cannot be captured by M .

1.10. Matching & Validation 43

glom Documentation, Release 20.5.0

1.10.4 Boolean operators and matching

While M is an easy way to construct expressions, sometimes a more object-oriented approach can be more suitable.

class glom.Or(*children, **kw)
Tries to apply the first child spec to the target, and return the result. If GlomError is raised, try the next child
spec until there are no all child specs have been tried, then raise MatchError.

class glom.And(*children, **kw)
Applies child specs one after the other to the target; if none of the specs raises GlomError, returns the last result.

class glom.Not(child)
Inverts the child. Child spec will be expected to raise GlomError (or subtype), in which case the target will
be returned.

If the child spec does not raise GlomError, MatchError will be raised.

1.10.5 String matching

class glom.Regex(pattern, flags=0, func=None)
checks that target is a string which matches the passed regex pattern

raises MatchError if there isn’t a match; returns Target if match

variables captures in regex are added to the scope so they can be used by downstream processes

1.10.6 Exceptions

class glom.MatchError(fmt, *args)
Raised when a Match or M check fails.

>>> glom({123: 'a'}, Match({'id': int}))
Traceback (most recent call last):
...
MatchError: key 123 didn't match any of ['id']

class glom.TypeMatchError(actual, expected)
MatchError subtype raised when a Match fails a type check.

>>> glom({'id': 'a'}, Match({'id': int}))
Traceback (most recent call last):
...
TypeMatchError: error raised while processing.
Target-spec trace, with error detail (most recent last):
- Target: {'id': 'a'}
- Spec: Match({'id': <type 'int'>})
- Spec: {'id': <type 'int'>}
- Target: 'a'
- Spec: int
TypeMatchError: expected type int, not str

44 Chapter 1. Installation

glom Documentation, Release 20.5.0

1.10.7 Validation with Check

Warning: Given the suite of tools introduced with Match, the Check specifier type may be deprecated in a
future release.

class glom.Check(spec=T, **kwargs)
Check objects are used to make assertions about the target data, and either pass through the data or raise excep-
tions if there is a problem.

If any check condition fails, a CheckError is raised.

Parameters

• spec – a sub-spec to extract the data to which other assertions will be checked (defaults to
applying checks to the target itself)

• type – a type or sequence of types to be checked for exact match

• equal_to – a value to be checked for equality match (“==”)

• validate – a callable or list of callables, each representing a check condition. If one or
more return False or raise an exception, the Check will fail.

• instance_of – a type or sequence of types to be checked with isinstance()

• one_of – an iterable of values, any of which can match the target (“in”)

• default – an optional default value to replace the value when the check fails (if default is
not specified, GlomCheckError will be raised)

Aside from spec, all arguments are keyword arguments. Each argument, except for default, represent a check
condition. Multiple checks can be passed, and if all check conditions are left unset, Check defaults to performing
a basic truthy check on the value.

class glom.CheckError(msgs, check, path)
This GlomError subtype is raised when target data fails to pass a Check’s specified validation.

An uncaught CheckError looks like this:

>>> target = {'a': {'b': 'c'}}
>>> glom(target, {'b': ('a.b', Check(type=int))})
Traceback (most recent call last):
...
CheckError: target at path ['a.b'] failed check, got error: "expected type to be
→˓'int', found type 'str'"

If the Check contains more than one condition, there may be more than one error message. The string rendition
of the CheckError will include all messages.

You can also catch the CheckError and programmatically access messages through the msgs attribute on the
CheckError instance.

1.11 Exceptions & Debugging

While glom works well when all goes as intended, it even shines when data doesn’t match expectations. glom’s error
messages and exception hierarchy have been designed to maximize readability and debuggability. Read on for a listing
of glom’s exceptions and how to debug them.

1.11. Exceptions & Debugging 45

glom Documentation, Release 20.5.0

Contents

• Exceptions

• Reading a glom Exception

• Debugging

1.11.1 Exceptions

glom introduces a several new exception types designed to maximize readability and debuggability. Note that all these
errors derive from GlomError, and are only raised from glom() calls, not from spec construction or glom type
registration. Those declarative and setup operations raise ValueError, TypeError, and other standard Python
exceptions as appropriate.

Here is a short list of links to all public exception types in glom.

• GlomError
• PathAccessError
• PathAssignError
• PathDeleteError
• CoalesceError
• FoldError
• MatchError
• TypeMatchError
• CheckError
• UnregisteredTarget
• BadSpec

1.11.2 Reading a glom Exception

glom errors are regular Python exceptions, but may look a little different from other Python errors. Because glom is a
data manipulation library, glom errors include a data traceback, interleaving spec and target data.

For example, let’s raise an error by glomming up some data that doesn’t exist:

1 >>> target = {'planets': [{'name': 'earth', 'moons': 1}]}
2 >>> glom(target, ('planets', ['rings']))
3 Traceback (most recent call last):
4 File "<stdin>", line 1, in <module>
5 File "/home/mahmoud/projects/glom/glom/core.py", line 1787, in glom
6 raise err
7 glom.core.PathAccessError: error raised while processing, details below.
8 Target-spec trace (most recent last):
9 - Target: {'planets': [{'name': 'earth', 'moons': 1}]}

10 - Spec: ('planets', ['rings'])
11 - Spec: 'planets'
12 - Target: [{'name': 'earth', 'moons': 1}]
13 - Spec: ['rings']
14 - Target: {'name': 'earth', 'moons': 1}
15 - Spec: 'rings'
16 glom.core.PathAccessError: could not access 'rings', part 0 of Path('rings'), got

→˓error: KeyError('rings')

46 Chapter 1. Installation

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

glom Documentation, Release 20.5.0

Let’s step through this output:

• Line 1: We created a planet registry, similar to the one in the glom Tutorial.

• Line 2-3: We try to get a listing of rings of all the planets. Instead, we get a Python traceback.

• Line 7: We see we have a PathAccessError.

• Line 8-9: The “target-spec trace”, our data stack, begins. It always starts with the target data as it was passed in.

• Line 10: Next is the top-level spec, as passed in: ('planets', ['rings'])

• Line 11: glom takes the first part of the spec from line 9, 'planets', to get the next target.

• Line 12: Because the spec on line 11 updated the current target, glom outputs it. When a spec is evaluated but
the target value is unchanged, the target is skipped in the trace.

• Line 14-15: We get to the last two lines, which include the culprit target and spec

• Line 16: Finally, our familiar PathAccessError message, with more details about the error, including the
original KeyError('rings').

This view of glom evaluation answers many of the questions a developer or user would ask upon encountering the
error:

• What was the data?

• Which part of the spec failed?

• What was the original error?

The data trace does this by peeling away at the target and spec until it hones in on the failure. Both targets and specs
in traces are truncated to terminal width to maximize readability.

Note: If for some reason you need the full Python stack instead of the glom data traceback, pass
glom_debug=True to the top-level glom call.

1.11.3 Debugging

Good error messages are great when the data has a problem, but what about when a spec is incorrect?

Even the most carefully-constructed specifications eventually need debugging. If the error message isn’t enough to fix
your glom issues, that’s where Inspect comes in.

class glom.Inspect(*a, **kw)
The Inspect specifier type provides a way to get visibility into glom’s evaluation of a specification, enabling
debugging of those tricky problems that may arise with unexpected data.

Inspect can be inserted into an existing spec in one of two ways. First, as a wrapper around the spec in
question, or second, as an argument-less placeholder wherever a spec could be.

Inspect supports several modes, controlled by keyword arguments. Its default, no-argument mode, simply
echos the state of the glom at the point where it appears:

>>> target = {'a': {'b': {}}}
>>> val = glom(target, Inspect('a.b')) # wrapping a spec

path: ['a.b']
target: {'a': {'b': {}}}
output: {}

1.11. Exceptions & Debugging 47

glom Documentation, Release 20.5.0

Debugging behavior aside, Inspect has no effect on values in the target, spec, or result.

Parameters

• echo (bool) – Whether to print the path, target, and output of each inspected glom. De-
faults to True.

• recursive (bool) – Whether or not the Inspect should be applied at every level, at or
below the spec that it wraps. Defaults to False.

• breakpoint (bool) – This flag controls whether a debugging prompt should appear
before evaluating each inspected spec. Can also take a callable. Defaults to False.

• post_mortem (bool) – This flag controls whether exceptions should be caught and in-
teractively debugged with pdb on inspected specs.

All arguments above are keyword-only to avoid overlap with a wrapped spec.

Note: Just like pdb.set_trace(), be careful about leaving stray Inspect() instances in production
glom specs.

1.12 Writing a custom Specifier Type

While glom comes with a lot of built-in features, no library can ever encompass all data manipulation operations.

To cover every case out there, glom provides a way to extend its functionality with your own data handling hooks.
This document explains glom’s execution model and how to integrate with it when writing a custom Specifier Type.

1.12.1 When to write a Specifier Type

glom has always supported arbitrary callables, like so:

glom({'nums': range(5)}, ('nums', sum))
10

With this built-in extensibility, what does a glom specifier type add?

Custom specifier types are useful when you want to:

1. Perform validation at spec construction time

2. Enable users to interact with new target types and operations

3. Improve readability and reusability of your data transformations

4. Temporarily change the glom runtime behavior

If you’re just building a one-off spec for transforming your own data, there’s no reason to reach for an extension.
glom’s extension API is easy, but a good old Python lambda is even easier.

1.12.2 Building your Specifier Type

Any object instance with a glomit method can participate in a glom call. By way of example, here is a programming
cliché implemented as a glom specifier type, with comments referencing notes below.

48 Chapter 1. Installation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pdb.html#module-pdb

glom Documentation, Release 20.5.0

class HelloWorldSpec(object): # 1
def glomit(self, target, scope): # 2

print("Hello, world!")
return target

And now let’s put it to use!

from glom import glom

target = {'example': 'object'}

glom(target, HelloWorldSpec()) # 3
prints "Hello, world!" and returns target

There are a few things to note from this example:

1. Specifier types do not need to inherit from any type. Just implement the glomit method.

2. The glomit signature takes two parameters, target and scope. The target should be familiar from
using glom(), and it’s the scope that makes glom really tick.

3. By convention, instances are used in specs passed to glom() calls, not the types themselves.

1.12.3 The glom Scope

The glom scope exposes runtime state to the specifier type. Let’s take a look inside a scope:

from glom import glom
from pprint import pprint

class ScopeInspectorSpec(object):
def glomit(self, target, scope):

pprint(dict(scope))
return target

glom(target, ScopeInspectorSpec())

Which gives us:

{T: {'example': 'object'},
<function glom at 0x7f208984d140>: <function _glom at 0x7f208984d5f0>,
<class 'glom.core.Path'>: [],
<class 'glom.core.Spec'>: <__main__.ScopeInspectorSpec object at 0x7f208bf58690>,
<class 'glom.core.Inspect'>: None,
<class 'glom.core.TargetRegistry'>: <glom.core.TargetRegistry object at
→˓0x7f208984b4d0>}

As you can see, all glom’s core workings are present, all under familiar keys:

• The current target, accessible using T as a scope key.

• The current spec, accessible under Spec.

• The current path, accessible under Path.

• The TargetRegistry, used to register new operations and target types.

• Even the glom() function itself, filed under glom().

1.12. Writing a custom Specifier Type 49

glom Documentation, Release 20.5.0

To learn how to use the scope’s powerful features idiomatically, let’s reimplement at one of glom’s standard specifier
types.

1.12.4 Specifiers by example

While we’ve technically created a couple of extensions above, let’s really dig into the features of the scope using an
example.

Sum is a standard extension that ships with glom, and it works like this:

from glom import glom, Sum

glom([1, 2, 3], Sum())
6

The version below does not have as much error handling, but reproduces all the same basic principles. This version of
Sum() code also contains comments with references to explanatory notes below.

from glom import glom, Path, T
from glom.core import TargetRegistry, UnregisteredTarget # 1

class Sum(object):
def __init__(self, subspec=T, init=int): # 2

self.subspec = subspec
self.init = init

def glomit(self, target, scope):
if self.subspec is not T:

target = scope[glom](target, self.subspec, scope) # 3

try:
4
iterate = scope[TargetRegistry].get_handler('iterate', target,

→˓path=scope[Path])
except UnregisteredTarget as ut:

5
raise TypeError('can only %s on iterable targets, not %s type (%s)'

% (self.__class__.__name__, type(target).__name__, ut))

try:
iterator = iterate(target)

except Exception as e:
raise TypeError('failed to iterate on instance of type %r at %r (got %r)'

% (target.__class__.__name__, Path(*scope[Path]), e))

return self._sum(iterator)

def _sum(self, iterator): # 6
ret = self.init()

for v in iterator:
ret += v

return ret

Now, let’s take a look at the interesting parts, referencing the comments above:

50 Chapter 1. Installation

glom Documentation, Release 20.5.0

1. Specifier types often reference the TargetRegistry, which is not part of the top-level glom API, and must be
imported from glom.core. More on this in #4.

2. Specifier type __init__ methods may take as many or as few arguments as desired, but many glom specifier
types take a first parameter of a subspec, meant to be fetched right before the actual specifier’s operation. This
helps readability of glomspecs. See Coalesce for an example of this idiom.

3. Specifier types should not reference the glom() function directly, instead use the glom() function as a key
to the scope map to get the currently active glom(). This ensures that the extension type is compatible with
advanced specifier types which override the glom() function.

4. To maximize compatiblity with new target types, glom allows new types and operations to be registered with
the TargetRegistry. Specifier types should respect this by contextually fetching these standard opera-
tors as demonstrated above. At the time of writing, three primary operators are used by glom itself, "get",
"iterate", and "assign".

5. In the event that the current target does not support your Specifier type’s desired operation, it’s customary to
raise a helpful error. Consider creating your own exception type and inheriting from GlomError.

6. Specifier types may have other methods and members in addition to the primary glomit() method. This
_sum() method implements most of the core of our custom specifier type.

Check out the implementation of the real glom.Sum() specifier for more details.

1.12.5 Summing up

glom Specifier Types are more than just add-ons; the extension architecture is how most of glom itself is imple-
mented. Build knowing that the paradigm is as powerful as anything built-in.

If you need more examples, another simple one can be found in this snippet. glom’s source code itself contains many
specifiers more advanced than the above. Simply search the codebase for glomit() methods and you will find no
shortage.

Happy extending!

1.13 glom Modes

Note: Be sure to read “Writing a custom Specifier Type” before diving into the deep details below.

A glom “mode” determines how Python built-in data structures are evaluated. Think of it like a dialect for how dict,
tuple, list, etc., are interpreted in a spec. Modes do not change the behavior of T, or many other core specifiers.
Modes are one of the keys to keeping glom specs short and readable.

A mode is used similar to a spec: whatever Python data structure is passed to the mode type constructor will be
evaluated under that mode. Once set, the mode remains in place until it is overridden by another mode.

glom only has a few modes:

1. Auto - The default glom behavior, used for data transformation, with the spec acting as a template.

2. Fill - A variant of the default transformation behavior; preferring to “fill” containers instead of iterating,
chaining, etc.

3. Match - Treats the spec as a pattern, checking that the target matches.

Adding a new mode is relatively rare, but when it comes up this document includes relevant details.

1.13. glom Modes 51

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list

glom Documentation, Release 20.5.0

1.13.1 Writing custom Modes

A mode is a spec which sets scope[MODE] to a function which accepts target, spec, and scope and returns a
result, a signature very similar to the top-level glom() method itself.

For example, here is an abbreviated version of the Fill mode:

class Fill(object):
def __init__(self, spec):

self.spec = spec

def glomit(self, target, scope):
scope[MODE] = _fill
return scope[glom](target, self.spec, scope)

def _fill(target, spec, scope):
recurse = lambda val: scope[glom](target, val, scope)
if type(spec) is dict:

return {recurse(key): recurse(val)
for key, val in spec.items()}

if type(spec) in (list, tuple, set, frozenset):
result = [recurse(val) for val in spec]
if type(spec) is list:

return result
return type(spec)(result)

if callable(spec):
return spec(target)

return spec

Like any other Specifier Type, Fill has a glomit() method, and this method sets the MODE key in the glom scope
to our _fill function. The name itself doesn’t matter, but the signature must match exactly: (target, spec,
scope).

As mentioned above, custom modes are relatively rare for glom. If you write one, let us know!

52 Chapter 1. Installation

https://github.com/mahmoud/glom/issues

Python Module Index

g
glom.core, 21
glom.matching, 40
glom.mutation, 31
glom.streaming, 34
glom.tutorial, 4

53

glom Documentation, Release 20.5.0

54 Python Module Index

Index

A
all() (glom.Iter method), 36
And (class in glom), 44
Assign (class in glom), 32
assign() (in module glom), 32

C
Call (class in glom), 28
Check (class in glom), 45
CheckError (class in glom), 45
chunked() (glom.Iter method), 35
Coalesce (class in glom), 25
CoalesceError (class in glom), 30
constants() (glom.Invoke method), 27

D
Delete (class in glom), 33
delete() (in module glom), 33
dropwhile() (glom.Iter method), 36

F
filter() (glom.Iter method), 35
first() (glom.Iter method), 37
Flatten (class in glom), 38
flatten() (glom.Iter method), 36
flatten() (in module glom), 37
Fold (class in glom), 39
FoldError (class in glom), 40

G
glom() (in module glom), 21
glom.core (module), 21
glom.matching (module), 40
glom.mutation (module), 31
glom.streaming (module), 34
glom.tutorial (module), 4
GlomError (class in glom), 30
Glommer (class in glom), 31

I
Inspect (class in glom), 47
Invoke (class in glom), 26
Iter (class in glom), 34

L
limit() (glom.Iter method), 36
Literal (class in glom), 23

M
M (in module glom), 43
map() (glom.Iter method), 35
Match (class in glom), 40
MatchError (class in glom), 44
matches() (glom.Match method), 41
Merge (class in glom), 38
merge() (in module glom), 38

N
Not (class in glom), 44

O
Optional (class in glom), 42
Or (class in glom), 44

P
Path (class in glom), 22
PathAccessError (class in glom), 29
PathAssignError (class in glom), 34
PathDeleteError (class in glom), 34

R
Ref (class in glom), 29
Regex (class in glom), 44
register() (in module glom), 31
Required (class in glom), 42

S
SKIP (in module glom), 26

55

glom Documentation, Release 20.5.0

slice() (glom.Iter method), 36
Spec (class in glom), 23
specfunc() (glom.Invoke class method), 27
specs() (glom.Invoke method), 27
split() (glom.Iter method), 35
star() (glom.Invoke method), 28
STOP (in module glom), 26
Sum (class in glom), 39

T
T (in module glom), 24
takewhile() (glom.Iter method), 36
TypeMatchError (class in glom), 44

U
unique() (glom.Iter method), 36
UnregisteredTarget (class in glom), 30

V
verify() (glom.Match method), 41

56 Index

	Installation
	Python Module Index
	Index

